K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco




descargar 30.91 Kb.
títuloK: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco
fecha de publicación25.10.2015
tamaño30.91 Kb.
tipoDocumentos
med.se-todo.com > Biología > Documentos
UNIVERSIDAD CENTRAL DEL ECUADOR

FACULTAD DE CIENCIAS QUÍMICAS

LABORATORIO DE BIOTECNOLOGÍA
David Trujillo I.
Dispersión de la Luz

Cuando un haz de luz paralelo (colimado) golpea una partícula en suspensión, parte de la luz es reflejada, parte es diseminada, parte es absorbida y parte es transmitida. La nefelometría mide la luz dispersada por una solución de partículas. La turbidimetría mide la luz dispersada como un decrecimiento de la luz transmitida a través de la solución. Con relación a la longitud de onda y al tamaño de la partícula pueden existir tres tipos de dispersión.

Los métodos de dispersión de la luz son las técnicas más utilizadas para monitorear el crecimiento de los cultivos bacterianos. Son muy útiles y poderosos pero pueden llevar a resultados erróneos. Principalmente, dan información sobre el peso seco (contenido macromolecular).
Turbidimetría
En una suspensión microbiana la cantidad de microorganismos está directamente relacionada con la turbiedad o densidad óptica. La metodología es útil con suspensiones de densidad microbiana baja y con cultivos en donde los microorganismos son unicelulares y con un tamaño de unos cuantos micrómetros, características que les permiten mantenerse suspendidos y homogéneamente distribuidos; en tanto que con microorganismos de mayor tamaño y con aquellos productores de polisacáridos esta metodología no es adecuada.

 La turbidimetría mide la reducción de la transmisión de luz debido a partículas de una suspensión y cuantifica la luz residual transmitida.

Estudios teóricos y experimentales han mostrado que soluciones diluidas de diferentes tipos de bacterias, independientemente del tamaño celular, tienen casi la misma absorbancia por unidad de concentración de peso seco. Esto quiere decir que, en soluciones diluidas, la absorbancia es directamente proporcional al peso seco, independientemente del tamaño celular del microorganismo. Sin embargo, se encuentran absorbancias muy diferentes por partícula o por UFC (Unidad Formadora de Colonia) cuando los tamaños de las células bacterianas son diferentes. Por esta razón, para estimar el número de microorganismos totales o el número de microorganismos viables de una suspensión bacteriana debe realizarse una "curva de calibración" con cada tipo de microorganismo, sólo de esta forma es posible relacionar Absorbancia (Densidad Óptica) con el número de microorganismos totales o con UFC.



Absorbancia = K x Peso Seco

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). 

Peso seco: Concentración celular bacteriana expresada en unidades de peso seco (µg/ml-mg/ml).

La relación directa entre la absorbancia y el peso seco sólo se aplica para suspensiones diluidas de bacterias. Estas suspensiones no deben tener una absorbancia mayor a 0.3, ya que valores mayores producen desviaciones de la ley de Beer. Sin embargo, el inconveniente de utilizar suspensiones diluidas puede involucrar un mayor error de pipeteo y menor sensibilidad por el bajo nivel de absorción.




En estos gráficos se puede apreciar que suspensiones diluidas de dos microorganismos diferentes con igual peso seco tienen la misma absorbancia, mientras que para el mismo número de microorganismos totales la absorbancia de cada suspensión es distinta.


Medida de la Biomasa


La medida de la masa de los constituyentes de la célula bacteriana es utilizada frecuentemente como base para la medida de una actividad metabólica, o de un constituyente metabólico o químico.

Algunos de los métodos para cuantificar la biomasa son obvios y confiables, pero pueden volverse complicados si se busca la exactitud.

Peso húmedo: Se obtiene a partir de una muestra en suspensión que es pesada luego de la separación de las células por filtración o centrifugación. Es una técnica útil para grandes volúmenes de muestra.

La principal desventaja es que el diluyente queda atrapado en el espacio intercelular y contribuye al peso total de la masa. La cantidad de líquido retenida puede ser importante, por ejemplo, un pellet de células bacterianas muy empaquetadas puede contener un espacio intercelular que aporta entre el 5-30% del peso, de acuerdo a la forma y deformación celular. Para corregir el peso húmedo se determina la cantidad de líquido que queda retenida en el espacio intercelular luego de una centrifugación, para ello se utilizan soluciones de polímeros no iónicos (como el Dextran) que pueden ingresar en el espacio intercelular pero no pueden atravesar las paredes bacterianas.

Peso seco: El peso seco (contenido de sólidos) de las células bacterianas que se encuentran en una suspensión se obtiene por el secado de un volumen en un horno a 105°C hasta peso constante. Esta técnica es útil para grandes volúmenes de muestra, debido a que diferencias del orden de los miligramos representan el peso de un gran número de bacterias.

La desventaja de este método es que componentes volátiles de la célula pueden perderse por el secado y puede existir alguna degradación. También la muestra seca puede recobrar humedad durante el pesado, principalmente si el ambiente tiene una humedad relativa alta.

Determinación de ácidos nucleicos: Es una técnica que permite determinar indirectamente la masa de una población bacteriana. Se determina la cantidad existente de un determinado ácido nucleico (generalmente DNA) y a partir de este dato se estima la masa de la población.

Determinación de nitrógeno: Es una técnica que permite determinar indirectamente la masa de una población bacteriana. Existen distintas técnicas para determinar la cantidad de nitrógeno que contiene una muestra con relación al compuesto que se quiera determinar. Puede analizarse el nitrógeno no proteico mediante el NO2-, NO3-, NH4+, el nitrógeno proteico mediante absorción en UV, Reacción de Biuret, Reacción de Lowry, o el nitrógeno total mediante la Digestión de Kjeldahl.

Incorporación de precursores radiactivos: Es una técnica que permite determinar indirectamente la masa de una población bacteriana. En esta técnica se adiciona al medio un compuesto marcado radiactivamente que puede ser incorporado a la célula, y luego se determina la cantidad de marca incorporada por toda la población.

Curva del Crecimiento Bacteriano.

La curva del crecimiento bacteriano resulta de la representación gráfica de la determinación periódica del número de células viables por mililitro que existen en un líquido inoculado con células microbianas provenientes de un cultivo que ha crecido previamente hasta la saturación.

Dicha curva se divide en seis fases, como se representa en la figura, mismas que se simbolizan con letras de la A a la F. A continuación también se muestra un cuadro con las características principales de cada fase y se desarrollan las fases más relevantes.

Fase de Rezago

Este periodo consiste en la adaptación de las células microbianas a su nuevo ambiente. En esta fase, las células microbianas se envuentran empobrecidas en cuanto a metabolitos y enzimas, esto debido a las condiciones desfavorables que representaba el cultivo previo.

Por lo anterior, en este lapso de tiempo se forman las enzimas y los metabolitos intermedios hasta alcanzar las concentraciones necesarias para reiniciar el crecimiento.

Este periodo se puede prolongar en el caso de que el medio de cultivo previo y las condiciones actuales resulten tan diferentes que las células sean genéticamente incapaces de sobrevivir, por lo que sólo unas cuantas mutantes podrán subsistir, y obviamente se requerirá más tiempo para que éstas se multipliquen lo suficiente y sea notorio el aumento de células.

Fase Exponencial

Como el nombre lo indica, en esta fase las células se encuentran en un estado de crecimiento sostenido.

Se sintetiza nuevo material celular a una tasa constante, pero éste material es en sí catalítico y la masa aumenta de manera exponencial. Lo anterior continua hasta que uno o más nutrimentos se agoten, o hasta que se acumule tal cantidad de metabolitos tóxicos que se inhiba el crecimiento. El nutrimento limitante para los organismos aerobios suele ser el oxígeno : cuando la concentración bacteriana es de aproximadamente 1 x 107 / ml es necesario incrementar el ingreso de oxígeno mediante agitación o burbujeo ; pero cuando la concentración alcanza 4 o 5 x 109 bacterias por ml, la tasa de difusión de oxígeno no puede satisfacer las demandas aun en un medio aireado, por lo que el crecimiento disminuye progresivamente.

Durante el crecimiento exponencial, la tasa de crecimiento de las células (medida en gramos de biomasa producida por hora), cuando el crecimiento no es limitado por los nutrimentos, se puede obtener multiplicando la constante de la tasa de crecimiento (k) por la concentración de biomasa. La constante de la tasa de crecimiento es la tasa a la cuál las células producen más células, y el valor que esta toma se interpreta como los gramos de biomasa producidos por cada gramo de biomasa preexistente creados en una hora.

El crecimiento se denomina exponencial porque la biomasa se incrementa exponencialmente con respecto al tiempo. De lo anterior se deriva que, si graficamos el logaritmo de la concentración de la biomasa (o celular) en función del tiempo, como ocurre en la curva del crecimiento, obtendremos una línea recta como representación de esta fase.

Esta fase puede prolongarse indefinidamente si las células se transfieren repetidamente a un medio nuevo (fresco) de composición idéntica al anterior, lo cual se logra de manera automática mediante dos aparatos : el quimiostato y el turbidostato.

Fase Estacionaria Máxima

Como se explicó en la descripción de la fase anterior, ante el agotamiento de nutrimentos en el medio o la acumulación de metabolitos tóxicos el crecimiento cesa por completo después de un periodo de decrecimiento en la tasa de crecimiento, lo cual corresponde a la fase D o de retraso.

No obstante, por lo general en esta fase se puede observar recambio celular, lo cual se debe a que, aunque existe una pérdida lenta de células por muerte, dicha pérdida se compensa exactamente por la formación de nuevas células a través de crecimiento y divisón. Así, la cifra de células viables se mantiene constante, aunque en realidad en el conteo aumente poco a poco el número de células, si se cuentan también las muertas.

Para comprender lo anterior debemos considerar que, para una célula microbiana, muerte significa la pérdida irreversible de la capacidad para reproducirse (crecer y dividirse), lo cuál se comprueba cuando una célula es incapaz de producir una colonia en cualquier medio. De lo anterior se deriva que designar a una célula microbiana como muerta no implica su destrucción física.

La duración de esta fase depende de la naturaleza del microorganismo y de las condiciones del medio.

Fase de Declinación

Esta fase, también conocida como fase de muerte, representa el decremento de células debido al aumento progresivo de la tasa de mortalidad, misma que tarde o temprano alcanza un valor sostenido.

Por lo general, una vez que la mayoría de las células ha muerto, la tasa de mortalidad disminuye bruscamente, por lo que un número pequeño de sobrevivientes pueden persistir en cultivo por meses o años. Dicha persistencia puede deberse a que las células consiguen crecer gracias a los nutrimientos liberados por las células que mueren y se lisan, observándose recambio celular.



Bibliografía

similar:

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco icon50% peso seco)  “ladrillos específicos”

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconResumen Se evaluó el efecto de diferentes bioestimulantes sobre la...

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco icon1. El LI natural es una mezcla de 6 LI, peso atómico 6,0151, y 7...

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconEl hígado es la glándula más grande del cuerpo y es una glándula...

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconEs una enfermedad crónica que se caracteriza por un aumento de la...

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconUniversidad catolico agropecuaria del tropico seco de esteli

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconEstado de América del Sur; 1140000 km²; 42321361 hab. (Colombianos.)...

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconI. Peso atómico, peso molecular, símbolos químicos, concepto de mol

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconEvaluación de química
«solución de ácido acético al 4% en peso». El 4% en peso indica que el frasco contiene

K: constante que varía con la longitud de onda utilizada y representa la inversa del peso seco del microorganismo que produce un aumento de 10 veces en el valor de la absorbancia (1/W0). Peso seco iconRegulación neuroendocrina del hambre, la saciedad, del peso corporal y del apetito


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com