Instituto politecnico nacional






descargar 116.59 Kb.
títuloInstituto politecnico nacional
página1/2
fecha de publicación02.02.2016
tamaño116.59 Kb.
tipoDocumentos
med.se-todo.com > Química > Documentos
  1   2
esca.jpgipn.jpg

INSTITUTO POLITECNICO NACIONAL

ESCUELA SUPERIOR DE COMERCIO Y ADMINISTRACION

UNIDAD SANTO TOMAS

DESARROLLO SUSTENTABLE

PROFRA.

RICARDO CRUZ AGUILAR

N.L. 15

GRUPO: 1RV7

TURNO: VESPERTINO

TERCERA EVALUACION

ENERGIAS MAS LIMPIAS”

ENERGIAS MAS LIMPIAS

¿Qué son?

La disponibilidad energética de las fuentes de energía renovable es mayor que las fuentes de energía convencionales, sin embargo su utilización es escasa.

El desarrollo de la tecnología, el incremento de la exigencia social y los costos más bajos de instalación y rápida amortización, están impulsando un mayor  uso de las fuentes de energía de origen renovable en los últimos años.

De igual modo, el cuestionamiento del modelo de desarrollo sostenido y su cambio hacia un modelo de desarrollo sostenible, implica una nueva concepción sobre la producción, el transporte y el consumo de energía.

En este modelo de desarrollo sostenible, las energías de origen renovable, son consideradas como fuentes de energía inagotables, y con la peculiaridad de ser energías limpias, con las siguientes características: suponen un nulo o escaso impacto ambiental, su utilización no tiene riesgos potenciales añadidos, indirectamente suponen un enriquecimiento de los recursos naturales y son una alternativa a las fuentes de energía convencionales, pudiendo sustituirlas paulatinamente.

¿Cuáles son?

Entre las energías limpias más conocidas tenemos:

  1. Energía solar

  2. Biomasa

  3. Energía eólica

  4. Energía geotérmica

  5. Energía hidroeléctrica

ENERGIA SOLAR

La energía solar es la energía obtenida directamente del Sol. La radiación solar incidente en la Tierra puede aprovecharse, por su capacidad para calentar, o directamente, a través del aprovechamiento de la radiación en dispositivos ópticos o de otro tipo. Es un tipo de energía renovable y limpia, lo que se conoce como energía verde.

La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000 W/ en la superficie terrestre. A esta potencia se la conoce como irradiancia.

La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias.

La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.

La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1354 W/ (que corresponde a un valor máximo en el perihelio de 1395 W/ y un valor mínimo en el afelio de 1308 W/.)

Según los informes de Greenpeace, la fotovoltaica podrá suministrar electricidad a dos tercios de la población mundial en 2030.

RENDIMIENTO

Cada sistema tiene diferentes rendimientos. Los típicos de una célula fotovoltaica (aislada) de silicio policristalino oscilan alrededor del 10%. Para células de silicio monocristalino, los valores oscilan en el 15%. Los más altos se consiguen con los colectores solares térmicos a baja temperatura (que puede alcanzar el 70% de transferencia de energía solar a térmica).

También la energía solar termoeléctrica de baja temperatura, con el sistema de nuevo desarrollo, ronda el 50% en sus primeras versiones. Tiene la ventaja que puede funcionar 24 horas al día a base de agua caliente almacenada durante las horas de sol.

A continuación, el sistema de discos Stirling (30-40%). Como ventaja añadida, el calor residual puede ser reaprovechado por cogeneración.

Los paneles solares fotovoltaicos tienen, como hemos visto, un rendimiento en torno al 15 % y no producen calor que se pueda reaprovechar -aunque hay líneas de investigación sobre paneles híbridos que permiten generar energía eléctrica y térmica simultáneamente.

Sin embargo, son muy apropiados para instalaciones sencillas en azoteas y de autoabastecimiento -proyectos de electrificación rural en zonas que no cuentan con red eléctrica-, aunque su precio es todavía alto. Para incentivar el desarrollo de la tecnología con miras a alcanzar la paridad -igualar el precio de obtención de la energía solar fotovoltaica al de otras fuentes más económicas en la actualidad-, existen primas a la producción, que garantizan un precio fijo de compra por parte de la red eléctrica. En el caso de Alemania, Italia o España.

También se estudia obtener energía de la fotosíntesis de algas y plantas, con un rendimiento del 3%.

Según el 21º Estudio del World Energy Council, para el año 2100 el 70% de la energía consumida será de origen solar.

TECNOLOGIA Y USOS

Clasificación por tecnologías y su correspondiente uso más general:

La instalación de centrales de energía solar en la zonas marcadas en el mapa podría proveer algo más que la energía actualmente consumida en el mundo (asumiendo una eficiencia de conversión energética del 8%), incluyendo la proveniente de calor, energía eléctrica, combustibles fósiles, etcétera. Los colores indican la radiación solar promedio entre 1991 y 1993 (tres años, calculada sobre la base de 24 horas por día y considerando la nubosidad observada mediante satélites).


Otros usos de la energía solar y ejemplos más prácticos de sus aplicaciones:



  • Arquitectura sostenible

  • Cubierta Solar

  • Acondicionamiento y ahorro de energía en edificaciones

    • Calentamiento de agua

    • Calefacción doméstica

    • Iluminación

    • Refrigeración

    • Aire acondicionado

    • Energía para pequeños electrodomésticos

BIOMASA

Biomasa, según el Diccionario de la Real Academia Española, tiene dos acepciones:

  1. f. Biol. Materia total de los seres que viven en un lugar determinado, expresada en peso por unidad de área o de volumen.

  2. f. Biol. Materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.

Con la primera acepción se utiliza habitualmente en Ecología. La segunda acepción, más restringida, se refiere a la biomasa 'útil' en términos energéticos: las plantas transforman la energía radiante del Sol en energía química a través de la fotosíntesis, y parte de esa energía química queda almacenada en forma de materia orgánica; la energía química de la biomasa puede recuperarse quemándola directamente o transformándola en combustible.

Un equívoco muy común es confundir 'materia orgánica' con 'materia viva', pero basta considerar un árbol, en el que la mayor parte de la masa está muerta, para deshacer el equívoco; de hecho, es precisamente la biomasa 'muerta' la que en el árbol resulta más útil en términos energéticos. Se trata de un debate importante en ecología, como muestra esta apreciación de Margalef (1980:12):

Todo ecólogo empeñado en estimar la biomasa de un bosque se enfrenta, tarde o temprano, con un problema. ¿Deberá incluir también la madera, y quizás incluso la hojarasca y el mantillo? Una gran proporción de la madera no se puede calificar de materia viva, pero es importante como elemento de estructura y de transporte, y la materia orgánica del suelo es también un factor de estructura.

Otro equívoco muy común es utilizar 'biomasa' como sinónimo de la energía útil que puede extraerse de ella, lo que genera bastante confusión debido a que la relación entre la energía útil y la biomasa son muy variables y depende de innumerables factores. Para empezar, la energía útil puede extraerse por combustión directa de biomasa (madera, excrementos animales, etc.), pero también de la combustión de combustibles obtenidos de ella mediante transformaciones físicas o químicas (gas metano de los residuos orgánicos, por ejemplo), procesos en los que 'siempre' se pierde algo de la energía útil original. Además, la biomasa puede ser útil directamente como materia orgánica en forma de abono y tratamiento de suelos (por ejemplo, el uso de estiércol o de coberturas vegetales). Y por supuesto no puede olvidarse su utilidad más común: servir de alimento a muy diversos organismos, la humanidad incluida (véase 'cadena trófica').

La biomasa de la madera, residuos agrícolas y estiércol continúa siendo una fuente principal de energía y materia útiles en países poco industrializados.

En la primera acepción, es la masa total de toda la materia que forma un organismo, una población o un ecosistema y tiende a mantenerse más o menos constante. Su medida es difícil en el caso de los ecosistemas. Por lo general, se da en unidades de masa por cada unidad de superficie. Es frecuente medir la materia seca (excluyendo el agua). En la pluviselva del Amazonas puede haber una biomasa de plantas de 1.100 toneladas por hectárea de tierra.

Pero mucho más frecuente es el interés en la 'producción neta' de un ecosistema, es decir, la nueva materia orgánica generada en la unidad de superficie a lo largo de una unidad tiempo, por ejemplo, en una hectárea y a lo largo de un año. En teoría, en un ecosistema que ha alcanzado el clímax la producción neta es nula o muy pequeña: el ecosistema simplemente renueva su biomasa sin crecimiento a la vez que la biomasa total alcanza su valor máximo.

Por ello la biomasa es uno de los atributos más relevantes para caracterizar el estado de un ecosistema o el proceso de sucesión ecológica en un territorio (véase, por ejemplo, Odum, 1969).

En términos energéticos, se puede utilizar directamente, como es el caso de la leña, o indirectamente en forma de biocombustibles (biodiésel, bioalcohol, biogás, bloque sólido combustible). Pero al igual que no consideramos al vino como biomasa, debe evitarse denominar como biomasa a los biocombustibles (nótese que el etanol puede obtenerse del vino por destilación): 'biomasa' debe reservarse para denominar la materia prima empleada en la fabricación de biocombustibles.

La biomasa podría proporcionar energías sustitutivas a los combustibles fósiles, gracias a biocombustibles líquidos (como el biodiésel o el bioetanol), gaseosos (gas metano) o sólidos (leña), pero todo depende de que no se emplee más biomasa que la producción neta del ecosistema explotado, de que no se incurra en otros consumos de combustibles en los procesos de transformación, y de que la utilidad energética sea la más oportuna frente a otros usos posibles (como abono y alimento, véase la discusión que para España plantea Carpintero, 2006).

Actualmente (2008), la biomasa proporciona combustibles complementarios a los fósiles, ayudando al crecimiento del consumo mundial (y de sus correspondientes impactos ambientales), sobre todo en el sector transporte (Estevan, 2008). Este hecho contribuye a la ya amplia apropiación humana del producto total de la fotosíntesis en el planeta, que supera actualmente más de la mitad del total (Naredo y Valero, 1999), apropiación en la que competimos con el resto de las especies.

OBTENCION DE COMBUSTIBLES

Hay varias maneras de clasificar los distintos combustibles que pueden obtenerse a partir de la biomasa. Quizás la más pertinente es por el proceso de producción necesario antes de que el combustible esté listo para el uso.

  • Uso directo. La biomasa empleada sufre sólo transformaciones físicas antes de su combustión, caso de la madera o la paja. Puede tratarse de residuos de otros usos: poda de árboles, restos de carpintería, etc.

  • Fermentación alcohólica. Se trata del mismo proceso utilizado para producir bebidas alcohólicas. Consta de una fermentación anaeróbica liderada por levaduras en las que una mezcla de azúcares y agua (mosto) se transforma en una mezcla de alcohol y agua con emisión de dióxido de carbono. Para obtener finalmente etanol es necesario un proceso de destilación en el que se elimine el agua de la mezcla. Al tratarse de etanol como combustible no puede emplearse aquí el método tradicional de destilación en alambique, pues se perdería más energía que la obtenida. Cuando se parte de una materia prima seca (cereales) es necesario producir primero un mosto azucarado mediante distintos procesos de triturado, hidrólisis ácida y separación de mezclas.

  • Transformación de ácidos grasos. Aceites vegetales y grasas animales pueden transformarse en una mezcla de hidrocarburos similar al diesel a través de un complejo proceso de esterificación, eliminación de agua, transesterificación, y destilación con metanol, al final del cual se obtiene también glicerina y jabón.

  • Descomposición anaeróbica. Se trata de nuevo de un proceso liderado por bacterias específicas que permite obtener metano en forma de biogás a partir de residuos orgánicos, fundamentalmente excrementos animales. A la vez se obtiene como un subproducto abono para suelos.


En todos estos procesos hay que analizar algunas características a la hora de enjuiciar si el combustible obtenido puede considerarse una fuente renovable de energía:

  • Emisiones de CO2 (dióxido de carbono). En general, el uso de biomasa o de sus derivados puede considerarse neutro en términos de emisiones netas si sólo se emplea en cantidades a lo sumo iguales a la producción neta de biomasa del ecosistema que se explota. Tal es el caso de los usos tradicionales (uso de los restos de poda como leña, cocinas de bosta, etc.) si no se supera la capacidad de carga del territorio.

    • En los procesos industriales, puesto que resulta inevitable el uso de otras fuentes de energía (en la construcción de la maquinaria, en el transporte de materiales, y en algunos de los procesos imprescindibles, como el empleo de maquinaria agrícola durante el cultivo de materia prima), hay que contabilizar las emisiones producidas por esas fuentes como emisiones netas. En procesos poco intensivos en energía pueden conseguirse combustibles con emisiones netas significativamente menores que las de combustibles fósiles comparables. Sin embargo, el uso de procesos inadecuados (como sería la destilación con alambique tradicional para la fabricación de orujos) puede conducir a combustibles con mayores emisiones.

    • Hay que analizar también si se producen otras emisiones de gases con efecto invernadero. Por ejemplo, en la producción de biogás, un escape accidental puede dar al traste con el balance cero de emisiones, puesto que el metano tiene un potencial muy superior al dióxido de carbono.



  • Tanto en el balance de emisiones como en el balance de energía útil no debe olvidarse la contabilidad de los inputs indirectos de energía, tal es el caso de la energía incorporada en el agua dulce empleada. La importancia de estos inputs depende de cada proceso, en el caso del biodiesel, por ejemplo, se estima un consumo de 20 kilogramos de agua por cada kilogramo de combustible: dependiendo del contexto industrial la energía incorporada en el agua podría ser superior a la del combustible obtenido (Estevan, 2008: Cuadro 1).

  • Si la materia prima empleada procede de residuos, estos combustibles ayudan al reciclaje. Pero siempre hay que considerar si la producción de combustibles es el mejor uso posible para un residuo concreto.

  • Si la materia prima empleada procede de cultivos, hay que considerar si éste es el mejor uso posible del suelo frente a otras alternativas (cultivos alimentarios, reforestación, etc.). Esta consideración depende sobre manera de las circunstancias concretas de cada territorio.

  • Algunos de estos combustibles (bioetanol, por ejemplo) no emiten contaminantes sulfurados o nitrogenados, ni apenas partículas sólidas; pero otros sí (por ejemplo, la combustión directa de madera).

PROCESOS ESPECIALES

Existen procesos termoquímicos que mediante reacciones exotérmicas transforman parte de la energía química de la biomasa en energía térmica. Dentro de estos métodos se encuentran la combustión y la pirólisis. La energía térmica obtenida puede utilizarse para calefacción; para usos industriales, como la generación de vapor; o para transformarla en otro tipo de energía, como la energía eléctrica o la energía mecánica.

La combustión completa de hidrocarburos consiste en la oxidación de estos por el oxigeno del aire, obteniendo como productos de la reacción vapor de agua y dióxido de carbono y energía térmica.

Véase también: Generación de energía eléctrica y Central termoeléctrica

Desde la Edad Antigua se obtiene carbón vegetal mediante pirolísis, que consiste en la combustión incompleta de biomasa a unos 500 oC con déficit de oxigeno. El humo producido en esa combustión es una mezcla de monóxido y dióxido de carbono, hidrógeno e hidrocarburos ligeros.

ENERGIA EOLICA

Energía eólica es la energía obtenida del viento, o sea, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.

En la actualidad, la energía eólica es utilizada principalmete para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigawatts.[1] Mientras la eólica genera alrededor del 1% del consumo de electricidad mundial,[2] representa alrededor del 19% de la producción electrica en Dinamarca, 9% en España y Portugal, y un 6% en Alemania e Irlanda (Datos del 2007).

La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.

UTILIZACION

La industria de la energía eólica en tiempos modernos comenzó en 1979 con la producción en serie de turbinas de viento por los fabricantes Kuriant, Vestas, Nordtank, y Bonus. Aquellas turbinas eran pequeñas para los estándares actuales, con capacidades de 20 a 30 kW cada una. Desde entonces, la talla de las turbinas ha crecido enormemente, y la producción se ha expandido a muchos países.

VENTAJAS

  • Es un tipo de energía renovable ya que tiene su origen en procesos atmosféricos debidos a la energía que llega a la Tierra procedente del Sol.

  • Es una energía limpia ya que no produce emisiones atmosféricas ni residuos contaminantes.

  • No requiere una combustión que produzca dióxido de carbono (CO2), por lo que no contribuye al incremento del efecto invernadero ni al cambio climático.

  • Puede instalarse en espacios no aptos para otros fines, por ejemplo en zonas desérticas, próximas a la costa, en laderas áridas y muy empinadas para ser cultivables.

  • Puede convivir con otros usos del suelo, por ejemplo prados para uso ganadero o cultivos bajos como trigo, maíz, patatas, remolacha, etc.

  • Crea un elevado número de puestos de trabajo en las plantas de ensamblaje y las zonas de instalación.

  • Su instalación es rápida, entre 6 meses y un año.

  • Su inclusión en un sistema ínter ligado permite, cuando las condiciones del viento son adecuadas, ahorrar combustible en las centrales térmicas y/o agua en los embalses de las centrales hidroeléctricas.



  • Su utilización combinada con otros tipos de energía, habitualmente la solar, permite la autoalimentación de viviendas, terminando así con la necesidad de conectarse a redes de suministro, pudiendo lograrse autonomías superiores a las 82 horas, sin alimentación desde ninguno de los 2 sistemas.

  • La situación actual permite cubrir la demanda de energía en España un 30% debido a la múltiple situación de los parques eólicos sobre el territorio, compensando la baja producción de unos por falta de viento con la alta producción en las zonas de viento. Los sistemas del sistema eléctrico permiten estabilizar la forma de onda producida en la generación eléctrica solventando los problemas que presentaban los aerogeneradores como productores de energía al principio de su instalación.

  • Posibilidad de construir parques eólicos en el mar, donde el viento es más fuerte, más constante y el impacto social es menor, aunque aumentan los costes de instalación y mantenimiento. Los parques offshore son una realidad en los países del norte de Europa, donde la generación eólica empieza a ser un factor bastante importante.

DESVENTAJAS

Aspectos técnicos

Debido a la falta de seguridad en la existencia de viento, la energía eólica no puede ser utilizada como única fuente de energía eléctrica. Por lo tanto, para salvar los "valles" en la producción de energía eólica es indispensable un respaldo de las energías convencionales (centrales de carbón o de ciclo combinado, por ejemplo, y más recientemente de carbón limpio). Sin embargo, cuando respaldan la eólica, las centrales de carbón no pueden funcionar a su rendimiento óptimo, que se sitúa cerca del 90% de su potencia.

Tienen que quedarse muy por debajo de este porcentaje, para poder subir sustancialmente su producción en el momento en que afloje el viento. Por tanto, en el modo "respaldo", las centrales térmicas consumen más combustible por kW/h producido. También, al subir y bajar su producción cada vez que cambia la velocidad del viento, se desgasta más la maquinaría. Este problema del respaldo en España se va a tratar de solucionar mediante una interconexión con Francia que permita emplear el sistema europeo como colchón de la variabilidad eólica.

Además, la variabilidad en la producción de energía eólica tiene 2 importantes consecuencias:

  • Para evacuar la electricidad producida por cada parque eólico (que suelen estar situados además en parajes naturales apartados) es necesario construir unas líneas de alta tensión que sean capaces de conducir el máximo de electricidad que sea capaz de producir la instalación. Sin embargo, la media de tensión a conducir será mucho más baja. Esto significa poner cables 4 veces más gruesos, y a menudo torres más altas, para acomodar correctamente los picos de viento.

  • Es necesario suplir las bajadas de tensión eólicas "instantáneamente" (aumentando la producción de las centrales térmicas), pues si no se hace así se producirían, y de hecho se producen apagones generalizados por bajada de tensión. Este problema podría solucionarse mediante dispositivos de almacenamiento de energía eléctrica. Pero la energía eléctrica producida no es almacenable: es instantáneamente consumida o perdida.

Además, otros problemas son:

  • Técnicamente, uno de los mayores inconvenientes de los aerogeneradores es el llamado hueco de tensión. Ante uno de estos fenómenos, las protecciones de los aerogeneradores con motores de jaula de ardilla se desconectan de la red para evitar ser dañados y, por tanto, provocan nuevas perturbaciones en la red, en este caso, de falta de suministro. Este problema se soluciona bien mediante la modificación de la aparamenta eléctrica de los aerogeneradores, lo que resulta bastante costoso, bien mediante la utilización de motores síncronos.

  • Uno de los grandes inconvenientes de este tipo de generación, es la dificultad intrínseca de prever la generación con antelación. Dado que los sistemas eléctricos son operados calculando la generación con un día de antelación en vista del consumo previsto, la aleatoriedad del viento plantea serios problemas. Los últimos avances en previsión del viento han mejorado muchísimo la situación, pero sigue siendo un problema. Igualmente, grupos de generación eólica no pueden utilizarse como nudo oscilante de un sistema.

  • Además de la evidente necesidad de una velocidad mínima en el viento para poder mover las aspas, existe también una limitación superior: una máquina puede estar generando al máximo de su potencia, pero si el viento aumenta lo justo para sobrepasar las especificaciones del molino, es obligatorio desconectar ese circuito de la red o cambiar la inclinación de las aspas para que dejen de girar, puesto que con viento de altas velocidades la estructura puede resultar dañada por los esfuerzos que aparecen en el eje. La consecuencia inmediata es un descenso evidente de la producción eléctrica, a pesar de haber viento en abundancia, y otro factor más de incertidumbre a la hora de contar con esta energía en la red eléctrica de consumo.



Aspectos medioambientales

  • Generalmente se combina con centrales térmicas, lo que lleva a que existan quienes critican que realmente no se ahorren demasiadas emisiones de dióxido de carbono. No obstante, hay que tener en cuenta que ninguna forma de producción de energía tiene el potencial de cubrir toda la demanda y la producción energética basada en renovables es menos contaminante, por lo que su aportación a la red eléctrica es netamente positiva.

  • Existen parques eólicos en España en espacios protegidos como ZEPAs (Zona de Especial Protección de Aves) y LIC (Lugar de Importancia Comunitaria) de la Red Natura 2000, lo que es una contradicción. Si bien la posible inserción de alguno de estos parques eólicos en las zonas protegidas ZEPAS y LIC tienen un impacto reducido debido al aprovechamiento natural de los recursos, cuando la expansión humana invade estas zonas, alterándolas sin que con ello se produzca ningún bien.

  • Al comienzo de su instalación, los lugares seleccionados para ello coincidieron con las rutas de las aves migratorias, o zonas donde las aves aprovechan vientos de ladera, lo que hace que entren en conflicto los aerogeneradores con aves y murciélagos. Afortunadamente los niveles de mortandad son muy bajos en comparación con otras causas como por ejemplo los atropellos (ver gráfico). Aunque algunos expertos independientes aseguran que la mortandad es alta. Actualmente los estudios de impacto ambiental necesarios para el reconocimiento del plan del parque eólico tienen en consideración la situación ornitológica de la zona. Además, dado que los aerogeneradores actuales son de baja velocidad de rotación, el problema de choque con las aves se está reduciendo.



  • El impacto paisajístico es una nota importante debido a la disposición de los elementos horizontales que lo componen y la aparición de un elemento vertical como es el aerogenerador. Producen el llamado efecto discoteca: este efecto aparece cuando el sol está por detrás de los molinos y las sombras de las aspas se proyectan con regularidad sobre los jardines y las ventanas, parpadeando de tal modo que la gente denominó este fenómeno: “efecto discoteca”. Esto, unido al ruido, puede llevar a la gente hasta un alto nivel de estrés, con efectos de consideración para la salud. No obstante, la mejora del diseño de los aerogeneradores ha permitido ir reduciendo el ruido que producen.

  • La apertura de pistas y la presencia de operarios en los parques eólicos hace que la presencia humana sea constante en lugares hasta entonces poco transitados. Ello afecta también a la fauna.

ENERGIA GEOTERMICA

La energía geotérmica es aquella energía que puede ser obtenida por el hombre mediante el aprovechamiento del calor del interior de la Tierra. El calor del interior de la Tierra se debe a varios factores, entre los que cabe destacar el gradiente geotérmico, el calor radiogénico, etc. Geotérmico viene del griego geo, "Tierra", y thermos, "calor"; literalmente "calor de la Tierra".
  1   2

similar:

Instituto politecnico nacional iconInstituto politecnico nacional

Instituto politecnico nacional iconInstituto politécnico nacional

Instituto politecnico nacional iconInstituto politécnico nacional

Instituto politecnico nacional iconInstituto politecnico nacional

Instituto politecnico nacional iconInstituto politécnico nacional

Instituto politecnico nacional iconInstituto politecnico nacional

Instituto politecnico nacional icon“instituto politecnico nacional” escuela superior de ingenieria

Instituto politecnico nacional iconInstituto Politécnico Nacional cecyT “Miguel Othón de Mendizábal”

Instituto politecnico nacional iconInstituto politécnico loyola

Instituto politecnico nacional iconRede sirius / biblioteca ctc/E – Instituto Politécnico


Medicina





Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com