Unidad teoria cuantica y estructura atómica




descargar 191.15 Kb.
títuloUnidad teoria cuantica y estructura atómica
página1/5
fecha de publicación28.10.2015
tamaño191.15 Kb.
tipoDocumentos
med.se-todo.com > Derecho > Documentos
  1   2   3   4   5
UNIDAD 1. TEORIA CUANTICA Y ESTRUCTURA ATÓMICA.

La teoría atómica de la materia.

El mundo que nos rodea se compone de muy diversos materiales, algunos vivos, otros inanimados. Además, la materia cambia con frecuencia de una forma química a otra. En sus intentos por explicar estas observaciones, los filósofos desde los tiempos más antiguos han especulado acerca de la naturaleza del material fundamental del que está hecho el mundo. Demócrito (460-370 A.C.) y otros filósofos griegos de la antigüedad pensaban que todo el mundo material debía estar constituido por diminutas partículas indivisibles a las que llamaron átomos, que significa “indivisible”. Posteriormente, Platón y Aristóteles propusieron la noción de que no puede haber partículas indivisibles. La perspectiva “atómica” de la materia se desvaneció durante muchos siglos, durante los cuales la filosofía aristoteliana dominó la cultura occidental.

El concepto de átomo volvió a surgir en Europa durante el siglo XVII cuando los científicos trataron de explicar las propiedades de los gases. El aire se compone de algo invisible que está en constante movimiento, lo cual podemos percibir al sentir el viento, por ejemplo. Es natural pensar que diminutas partículas invisibles producen estos efectos conocidos. Isaac Newton, el científico más famoso de su época, era partidario de la idea de los átomos. Sin embargo, pensar en átomos en este sentido no es lo mismo que pensar en los átomos como los bloques químicos de construcción de la naturaleza. A medida que los químicos aprendieron a medir las cantidades de materiales que reaccionaban para producir nuevas sustancias, se sentaron las bases para una teoría atómica química. Esa teoría nació entre 1803 y 1807 de las investigaciones de un maestro de escuela inglés, John Dalton. Después de analizar un gran número de observaciones, Dalton planteó los siguientes postulados:


  1. Cada elemento se compone de partículas extremadamente pequeñas llamadas átomos.

  2. Todos los átomos de un elemento dado son idénticos; los átomos de elementos diferentes son diferentes y tienen propiedades distintas (incluida la masa).

  3. Los átomos de un elemento no se transforman en átomos diferentes durante las reacciones químicas; los átomos no se crean ni se destruyen en las reacciones químicas.

  4. Cuando se combinan átomos de más de un elemento se forman compuestos; un compuesto dado siempre tiene el mismo número relativo de la misma clase de átomos.


Según la teoría atómica de Dalton, los átomos son los bloques de construcción básicos de la materia; son las partículas más pequeñas de un elemento que conservan la identidad química del elemento. Como se señala en los postulados de la teoría de Dalton, un elemento se compone de una sola clase de átomo, en tanto que un compuesto contiene átomos de dos o más elementos.

La teoría de Dalton explica varias leyes sencillas de la combinación química que ya se conocían en su época. Una de ellas fue la ley de la composición constante: en un compuesto dado los números relativos y las clases de los átomos son constantes. Esta ley es la base del Postulado 4 de Dalton. Otra ley química fundamental era la ley de la conservación de la masa (también conocida como ley de la conservación de la materia): la masa total de los materiales presentes después de una reacción química es la misma que la masa total antes de la reacción. Esta ley es la base del Postulado 3. Dalton propuso que los átomos conservan su identidad y que durante las reacciones químicas los átomos se reacomodan para dar nuevas combinaciones químicas.

Una buena teoría no sólo debe explicar los hechos conocidos, sino también debe predecir otros hechos. Dalton usó su teoría para deducir la ley de las proporciones múltiples: si dos elementos A y B se combinan para formar más de un compuesto, las masas de B que se pueden combinar con una masa dada de A están en proporciones de números enteros pequeños. Podemos ilustrar esta ley considerando las sustancias agua y peróxido de hidrógeno, ambas formadas por los elementos hidrógeno y oxígeno. Al formar agua, 8.0 g de oxígeno reacciona con 1.0 g de hidrógeno. En el peróxido de hidrógeno, hay 16.0 g de oxígeno por cada 1.0 g de hidrógeno. En otras palabras, la proporción de la masa de oxígeno por gramo de hidrógeno en los dos compuestos es de 2:1. Usando la teoría atómica, podemos llegar a la conclusión de que el peróxido de hidrógeno contiene dos veces más átomos de oxígeno por átomo de hidrógeno que el agua.
El descubrimiento de la teoría atómica.
Dalton llegó a su conclusión acerca de los átomos con base en observaciones químicas en el mundo macroscópico del laboratorio. Ni él ni quienes le siguieron en los cien años posteriores a la publicación de sus trabajos, tenían pruebas directas de la existencia de los átomos. Ahora, en cambio, podemos usar potentes instrumentos para medir las propiedades de átomos individuales e incluso obtener imágenes de ellos.

A medida que los científicos desarrollaron métodos para sondear más a fondo la naturaleza de la materia, el átomo, que supuestamente era indivisible, comenzó a revelar indicios de una estructura más compleja. Ahora sabemos que el átomo se compone de piezas todavía más pequeñas llamadas partículas subatómicas. Antes de resumir el modelo actual de la estructura atómica, consideraremos brevemente algunos de los descubrimientos cruciales que dieron pie a ese modelo. Veremos que el átomo se compone parcialmente de partículas con carga eléctrica, algunas con carga positiva (+) y algunas con carga negativa (-). Mientras estudiamos el desarrollo de nuestro modelo actual del átomo, no debemos perder de vista una sencilla regla que rige la interacción de partículas cargadas: partículas con la misma carga se repelen, mientras que partículas con carga distinta se atraen.
Rayos catódicos y electrones.
A mediados del siglo XIX, los científicos comenzaron a estudiar las descargas eléctricas a través de tubos parcialmente evacuados (tubos al vacío, a los que se les había extraído por bombeo casi todo el aire) como los que se muestran en la figura 2.3. Cuando se aplica un alto voltaje se produce radiación dentro del tubo. Esta radiación recibió el nombre de rayos catódicos porque se origina en el electrodo negativo, o cátodo. Aunque los rayos en sí son invisibles, su movimiento puede detectarse porque ocasionan que ciertos materiales, incluido el vidrio, despidan rayos de luz fluorescente. (Los cinescopios de los televisores son tubos de rayos catódicos; una imagen de televisión es el resultado de la fluorescencia de la pantalla.)

Los científicos tenían diversas opiniones acerca de la naturaleza de los rayos catódicos. En un principio, no quedó claro si los rayos eran una nueva forma de radiación o si consistían en un flujo invisible de partículas. Los experimentos revelaron que los campos magnéticos y eléctricos desviaban los rayos catódicos, y ello sugería que los rayos tenían carga eléctrica [Figura 2.3(c)]. El científico británico J. J. Thomson observó varias propiedades de los rayos, entre ellas el hecho de que la naturaleza de los rayos no depende de la identidad del material del cátodo y que una placa metálica expuesta a los rayos catódicos adquiere una carga eléctrica negativa. En un artículo publicado en 1897, Thomson resumió sus observaciones y concluyó que los rayos catódicos son corrientes de partículas con carga negativa y masa. El artículo de Thomson se acepta generalmente como el “descubrimiento” de lo que ahora conocemos como el electrón.



Figura 2.3 (a) En un tubo de rayos catódicos, los electrones se desplazan del electrodo negativo (cátodo) al electrodo positivo (ánodo). (b) Fotografía de un tubo de rayos catódicos que contiene una pantalla fluorescente para mostrar la trayectoria de los rayos. (c) La presencia de un imán desvía la trayectoria de los rayos catódicos.


Thomson construyó un tubo de rayos catódicos con una pantalla fluorescente, como el que se muestra en la figura 2.4, para poder medir cuantitativamente los efectos de los campos magnético y eléctrico sobre el delgado haz de electrones que pasaban por un agujero en el electrodo positivo. Tales mediciones le permitieron calcular un valor de 1.76 x 108 coulombs por gramo para la relación carga eléctrica-masa del electrón.



Figura 2.4 Tubo de rayos catódicos con campos magnético y eléctrico perpendiculares. Los rayos catódicos (electrones) se originan en la placa negativa de la izquierda y se aceleran hacia la placa positiva, que tiene un agujero en el centro. Un haz de electrones pasa por el agujero, y su trayectoria se desvía posteriormente con los campos magnético y eléctrico. La relación carga-masa del electrón puede determinarse midiendo los efectos de los campos magnético y eléctrico sobre la dirección del haz.


Al conocerse la relación carga-masa del electrón, si se pudiera medir ya sea la carga o la masa de un electrón se podría calcular el valor de la otra cantidad. En 1909, Robert Millikan (1868-1953) de la University of Chicago logró medir la carga de un electrón realizando lo que se conoce como “experimento de la gota de aceite de Millikan” (Figura 2.5). Luego, Millikan calculó la masa del electrón usando su valor experimental para la carga, 1.6 x 10-19 C, y la relación carga-masa de Thomson, 1.76 x 108 C/g:

Empleando valores un poco más exactos, obtenemos el valor que se acepta actualmente para la masa del electrón, 9.10939 x 10-28 g. Esta masa es unas 2000 veces más pequeña que la del hidrógeno, el átomo más pequeño.



Figura 2.5 Representación del aparato que Millikan usó para medir la carga del electrón. El experimento consiste en dejar caer pequeñas gotas de aceite, que habían capturado electrones de más, entre dos placas cargadas eléctricamente. Millikan vigiló las gotitas, midiendo cómo el voltaje de las placas afectaba su rapidez de caída. Con base en estos datos, calculó las cargas de las gotas. Su experimento demostró que las cargas siempre eran múltiplos enteros de 1.60 x 10-19 C, cantidad que, según dedujo él, era la carga de un solo electrón.

Radiactividad.
En 1896, el científico francés Henri Becquerel (1852-1908) al estar estudiando un mineral de uranio llamado pechblenda, descubrió que emitía espontáneamente radiación de alta energía. Esta emisión espontánea de radiación se denomina radiactividad.

A sugerencia de Becquerel, Marie Curie y su esposo, Pierre, iniciaron sus famosos experimentos para aislar los componentes radiactivos del mineral. Estudios posteriores de la naturaleza de la radiactividad, efectuados principalmente por el científico británico Ernest Rutherford, revelaron tres tipos de radiación: alfa (α), beta (β) y gamma (γ). Cada tipo difiere en su comportamiento en un campo eléctrico, como se ilustra en la figura 2.8. La trayectoria de las radiaciones α y β es desviada por el campo eléctrico, aunque en direcciones opuestas, pero dicho campo no afecta a la radiación γ.

Rutherford demostró que tanto los rayos α como los β consisten en partículas que se mueven a alta velocidad, llamadas partículas α y β. De hecho, las partículas β son electrones de alta velocidad y pueden considerarse como el equivalente radiactivo de los rayos catódicos; luego, son atraídos por una placa con carga positiva. Las partículas α tienen una masa mucho mayor que las β y están cargadas positivamente; por tanto, son atraídas por una placa con carga negativa. Las partículas β tienen una carga de 1-, y las α, una carga de 2+. Además, Rutherford demostró que las partículas α se combinan con electrones para formar átomos de helio. Su conclusión fue que la partícula α consiste en un centro con carga positiva como el del átomo de helio. Rutherford también llegó a la conclusión de que la radiación γ es de alta energía similar a los rayos X; no consta de partículas y no posee carga.




Figura 2.8 Comportamiento de los rayos alfa (α), beta (β) y gamma (γ) en un campo eléctrico.


El átomo nuclear.
Al aumentar los indicios de que el átomo se componía de partículas aún más pequeñas, la atención se centró en la relación entre dichas partículas. A principios del siglo XX, Thomson razonó que, como los electrones constituyen una fracción muy pequeña de la masa de un átomo, probablemente había una relación con el tamaño del átomo, y propuso que el átomo consistía en una esfera uniforme de materia positiva en la que estaban incrustados los electrones.

Este modelo, conocido como “pudín de pasas”, por su semejanza con el tradicional postre inglés, tuvo una vida muy corta.

En 1910 Rutherford y sus colaboradores realizaron un experimento que dio al traste con el modelo de Thomson. Rutherford estaba estudiando los ángulos con los que las partículas α se dispersaban al pasar a través de una laminilla de oro muy delgada (Figura 2.10). Él y sus colaboradores descubrieron que casi todas las partículas α atravesaban directamente la laminilla, sin desviarse. Se vio que un porcentaje pequeño mostraba una desviación ligera, del orden de un grado, lo cual era congruente con el modelo atómico de Thomson. Sólo para no dejar cabos sueltos, Rutherford propuso a Ernest Marsden, un estudiante de licenciatura que trabajaba en su laboratorio, que se esforzara por hallar indicios de dispersión en ángulos grandes. Para sorpresa de todos, se observó cierta dispersión con ángulos grandes. Algunas partículas incluso rebotaban en la dirección de la que habían venido. La explicación de estos resultados no era obvia, pero quedaba claro que no era congruente con el modelo de “pudín de pasas” de Thomson.

Para 1911, Rutherford estaba en condiciones de explicar estas observaciones; postuló que la mayor parte de la masa del átomo, y toda su carga positiva, residía en una región muy pequeña, extremadamente densa, a la que llamó núcleo. La mayor parte del volumen total del átomo era espacio vacío en el que los electrones se movían alrededor del núcleo. En el experimento de dispersión de las radiaciones α, la mayor parte de las partículas atraviesan directamente la laminilla porque no se topan con el diminuto núcleo; simplemente pasan por el espacio vacío del átomo. Ocasionalmente, una partícula α se acerca mucho a un núcleo de los átomos de oro. La repulsión entre el núcleo del átomo de oro altamente cargado y la partícula α es lo bastante fuerte como para desviar la partícula α, menos masiva, como se muestra en la figura 2.11.



Figura 2.10 Experimento de Rutherford de la dispersión de partículas α.





Figura 2.11 Modelo de Rutherford que explica la dispersión de partículas (Figura 2.10). La laminilla de oro tiene unos cuantos miles de átomos de espesor. Cuando una partícula choca con un núcleo de oro (o pasa muy cerca de él), experimenta una fuerte repulsión. La partícula, menos masiva, es desviada de su trayectoria por esta interacción repulsiva.


Estudios experimentales subsecuentes condujeron al descubrimiento de partículas tanto positivas (protones) como neutras (neutrones) en el núcleo. Rutherford descubrió los protones en 1919, y el científico británico James Chadwick (1891-1972) descubrió los neutrones en 1932.
  1   2   3   4   5

similar:

Unidad teoria cuantica y estructura atómica icon3. Estructura atómica de la materia y teoría cuántica

Unidad teoria cuantica y estructura atómica iconLa célula: unidad de estructura y funcióN. La teoría celular

Unidad teoria cuantica y estructura atómica iconSolitones en teoría cuántica de campos” Patricia Melero

Unidad teoria cuantica y estructura atómica iconTeoría atómica

Unidad teoria cuantica y estructura atómica iconTeoría atómica

Unidad teoria cuantica y estructura atómica iconTeoría atómica de la materia

Unidad teoria cuantica y estructura atómica iconBibliografía teoria atomica de dalton

Unidad teoria cuantica y estructura atómica iconHistoria de la teoria atomica moderna

Unidad teoria cuantica y estructura atómica iconEstructura Atómica

Unidad teoria cuantica y estructura atómica iconLa Teoría Atómica se basa en la suposición de que la materia


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com