Resumen teórico




descargar 52.2 Kb.
títuloResumen teórico
fecha de publicación29.01.2016
tamaño52.2 Kb.
tipoResumen
med.se-todo.com > Documentos > Resumen


FUNDACIÓN UNIVERSIDAD DE AMÉRICA

GUÍA 6A DE MECÁNICA DE FLUIDOS

Profesor JUAN ANDRÉS SANDOVAL HERRERA




TEMA: Ecuación General de energía aplicada a un fluido

Objetivos específicos

  • Ampliar el Balance de Energia a la situación real no prevista por Bernoulli

  • Resolver problemas donde se tomen en cuenta las pérdidas de energía primarias y secundarias, sin calcularlas por sus ecuaciones.

  • Calcular potencia consumida por bombas para impulsar fluidos y la potencia generada por estos.

  • Entender el concepto de eficiencia mecánica.


RESUMEN TEÓRICO

1. Formas de energía de un fluido

Energía cinética:

Energía potencial:

Energía de flujo:

Donde, m: masa del elemento de fluido que circula por una sección de flujo y se mueve en la dirección x; u: velocidad lineal promedio en la sección transversal; g: aceleración de la gravedad; h: altura del centro de gravedad del elemento de fluido respecto a una referencia; P: presión manométrica del fluido a la altura h; V: volumen del elemento de fluido (A*x).

2. Formas de Transferencia de energía de un fluido

El calor no se considera en este curso, siendo la forma de transferencia más importante. De éste se habló algo en Balance de Materia y Energía y se hablará mucho más en Transferencia de Calor.

El trabajo. Puede ser hacia el fluido o desde el mismo. En virtud de esto se considera dos formas: Energía agregada al fluido (Recordar que energía es equivalente al trabajo). Y energía retirada del fluido. Se entiende así: si un equipo le da energía al fluido (porque ese equipo realiza un trabajo motriz) se incrementa la energía del fluido. Y si se retira energía del fluido (para producir un trabajo de expansión o compresión, o rotatorio, o cualquier otro trabajo mecánico), entonces la energía del fluido disminuye.

Las pérdidas. Naturalmente cuando algo fluye (sea sólido, líquido o gaseoso), genera una resistencia con lo que lo rodea. Puede que lo rodee aire, agua, o una pared metálica o de cualquier otro material. En todo caso, a medida que aumenta la velocidad de transporte del material, mayor será esa resistencia. Y se nota en que aumenta la temperatura de la sustancia en la zona en contacto con el medio resistivo. Y esto se debe a que la fricción, entre la sustancia y el medio, ocasiona que se transforme energía de flujo en calor, que se pierde a los alrededores. Es inconveniente, indeseable y costoso. Pero siempre aparecen estas pérdidas. Como no es económico medir el calor transferido en esas condiciones, lo que se hace es mirar la diferencia de energía total entre dos secciones. Ya que el principio de conservación de la energía dice que la energía total se debe conservar, entonces la diferencia entre la energía de dos puntos de un mismo fluido, en una misma tubería, debe ser las pérdidas debidas a la fricción y además, a los cambios de dirección y de área en la tubería o en la zona de transferencia del fluido.
3. ECUACIÓN GENERAL DE BALANCE ENERGÍA




Es decir, la energía de una sección de fluido se incrementa con la energía agregada por bombas o compresores (ha), se disminuye por el retiro de energía a través de turbinas o motores (hr); y, se disminuye siempre por las pérdidas de energía debidas a fricción y a elementos secundarios: .
Ejercicios resueltos de ecuación general de energía

  1. Por la tubería de la figura fluye agua a 40 °F hacia abajo. En el punto A la presión es 60 psig y la velocidad es 10 pies / s. La pérdida de energía entre los dos puntos es de 25 lbf.pie/lbf. Calcule la presión en el punto B.



SOLUCIÓN:

Como se ve en la figura, el flujo se da de A hacia B, bajando. Eso indica que va ganando energía cinética, es decir: aumenta la velocidad. Pero es que además, al reducir el área, por la ecuación de continuidad, debe aumentar la velocidad. Entonces, todo ese aumento de velocidad se ve compensando no solo por la pérdida de altura, sino por la pérdida de presión. Esto se verá con los resultados.

Se busca en las tablas de propiedades el peso específico del agua a 40 °F: 62,4 lbf / pie3. La altura A se puede considerar como 30 pies y la altura B como 0 pies, porque así la diferencia entre B y A da negativa, lo cual es lógico porque baja el fluido. La velocidad en B se calcula con la ecuación de continuidad, teniendo en cuenta el área de la sección circular, que es D2/4



Entonces, = 40 pies / s

Ahora, reemplazando en la ecuación de energía, pero simplificando los términos de energía agregada y energía removida, porque NO hay turbinas, motores, bombas ni compresores:





Despejando,

=

Respuesta: La presión en el punto B es 52,07 psig.

  1. Encuentre el flujo volumétrico que sale por la boquilla de descarga del tanque, si hay una presión de 140 kPa sobre el líquido. Primero, por ecuación de Bernoulli (idealmente) y luego considerando una pérdida de energía por el cambio abrupto de área al salir, de 2 N*m/N



SOLUCIÓN.

Aquí no están definidos los puntos de inicio y final de flujo, pero se ve que sería mucho más fácil tomarlos entre la superficie del líquido (inicio) y el chorro de salida (final). Esto simplifica la ecuación de energía así: la velocidad en el inicio es 0, porque la superficie está quieta (relativamente). La presión a la salida es cero, porque se mide presión manométrica, y la presión atmosférica es cero en la escala manométrica.

Primero: sin pérdidas, idealmente:



Como no dicen la temperatura, se asume que el peso específico del agua es el estándar: 9,81 kN/m3.



Despejando:



Caudal, donde A es el área de la boquilla.



Segundo: con pérdidas, realmente:



Ahora si se descuentan las pérdidas:







Conclusión: La diferencia entre el caudal real (menor) y el caudal ideal (mayor) se debe a las pérdidas de energía ya que se consume energía de flujo en ese cambio de área (la boquilla) y hace que la velocidad disminuya. A medida que el área de la boquilla es menor las pérdidas son menores. Sin embargo, más adelante se verá cómo se calculan esas pérdidas, que también dependen de la velocidad del líquido.

  1. En la figura se muestra un arreglo para determinar la pérdida de energía debida a cierto elemento de un aparato. La entrada de la tubería es de acero cédula 40 de 2 pulgadas de diámetro nominal, mientras que la salida es del mismo material pero de 4 pulgadas de diámetro nominal. Calcule la pérdida de energía del agua que fluye hacia arriba si el caudal es 0,2 pie3/s. El fluido manométrico es mercurio.



SOLUCIÓN:

Aquí la cuestión fundamental es hallar el valor de las pérdidas, a partir de la ecuación de energía, reemplazando los datos de velocidad, altura y la diferencia de presiones manométricas entre A y B. Se debe examinar previamente cómo determinar esa diferencia de presiones, puesto que se trata de un manómetro vertical.

Entonces, para la diferencia de presiones manométricas. Se parte del punto A y se va bajando, a medida que se baja la presión manométrica aumenta, porque hay más columna de líquido arriba.

Mientras que cuando el líquido sube, la presión manométrica disminuye porque disminuye la columna de líquido; y así hasta llegar al punto B. Así:



Despejando la diferencia de presiones entre A y B sobre el peso específico del agua (para reemplazarla en la ecuación de energía):



Las velocidades se pueden calcular con base en el caudal y las áreas. Pero a la hora de las áreas se va a las Tablas de acero, específicamente de cédula (catálogo) 40 y se buscan las áreas directamente. Donde el área en A es el área con 2 pulgadas de diámetro nominal: A2; y el A4 es el área en B, a la salida del equipo donde se le va a medir la pérdida de energía.

(Apéndice F1, Mott) A2 = 2,333 *10-2 pie2; A4 = 8,84 *10-2 pie2



Entonces, = 8,6 pies/s

De igual forma, 2,26 pie/s

Ahora, con estos datos se puede ir a la ecuación de energía, despejando hL, así:



= 15,7 pies

Respuesta: Se pierden 15,7 lbf*pie/lbf de energía (por unidad de peso de fluido) en ese equipo. (O: “se pierden 15,7 pie de carga del fluido en ese equipo”).


  1. La bomba de la figura envía agua del almacenamiento al nivel superior a razón de 20 pie3/s. La pérdida de energía entre la tubería de succión y la entrada de la bomba es 6 pie. Y la que hay entre la salida de la bomba y el depósito superior es de 12 pie.

Ambas tuberías son de acero cédula 40 y de 6 pulgadas de diámetro nominal.

Calcular:

  1. Presión a la entrada de la bomba; (b) Presión a la salida de la bomba; (c) Carga total sobre la bomba; (d) Potencia transmitida por la bomba al agua.


SOLUCIÓN:

Primero se seleccionan los puntos de inicio y final. Como se dijo en un ejercicio anterior, lo conveniente es que sean sobre la superficie del líquido en cada tanque. Así se eliminan las velocidades y, en este caso, las presiones. Hay que aclarar que aunque no parezca, los tanques están abiertos a la atmósfera. Lo que ocurre es que tienen una “ventila”. Sin embargo, en este ejercicio como preguntan presiones antes y después de la bomba, varían un poco los puntos de inicio y final.
Los datos de áreas de la tubería (Para calcular velocidad en los puntos que estén en la tubería, sabiendo que como no cambia el área, serán iguales) y el peso específico del agua se buscan en las tablas respectivas.
(a) Presión antes de la bomba:



Así, = -1094,71 lbf/pie2

Y en psig: 1094,71/144 =

-7,6 psig = p succión

Es negativa porque se crea un vacío para que la bomba succione el líquido, que está por debajo de su entrada. Si el líquido estuviera por arriba de la bomba, normalmente daría positivo.


  1. Presión después de la bomba:



Entonces, despejando pA
] *(1/144)

21,9 psig = p descarga


  1. Carga total sobre la bomba, ha:

En este caso se toman los puntos A y B sobre las superficies del líquido en los dos tanques. Y se deben sumar las pérdidas antes y después de la bomba, porque ya van incluidas entre los puntos de inicio y final. La altura zA es -10 pies y la zB es 40 porque va de A hacia B. Quedando así:


de carga
Quiere decir que la bomba agrega 68 lbf*pie de energía, por cada lbf de líquido que fluye.




  1. Potencia transmitida por la bomba, Pa:


Para este cálculo sólo hay que reemplazar datos en la siguiente fórmula (que se puede hallar de diversas maneras):

“potencia transmitida (agregada) por una bomba al fluido”, donde es el peso específico del líquido, Q es el caudal movido y ha es la carga sobre la bomba. Entonces,
68 pies *2
Una unidad más conocida y más usada, no sólo en el sistema Inglés, sino también en industrias donde se maneja el sistema internacional, es el “Horse power”, abreviado por “hp”. Su uso es tan común que se suele hablar de potencia simplemente en “caballos” sin indicar “de potencia”. Hay otros “caballos” que se “apellidan”: “de vapor”, pero estos ya no se usan tanto.
En este ejercicio, quedaría la potencia agregada por la bomba al fluido, en hp:



  1. Calcule la potencia que el fluido hidráulico transmite al motor de flujo si la presión en el punto A es 6,8 MPa y la presión en el punto B es 3,4 MPa. La entrada al motor es una tubería de acero de 1 pulgada de diámetro externo con espesor de pared de 0,065 pulgadas, mientras que la salida es de 2 pulgadas de diámetro externo con el mismo espesor. El fluido hidráulico tiene una densidad relativa de 0,9. La velocidad del fluido en el punto B es 1,5 m/s.



SOLUCIÓN:

En este ejercicio hay una diferencia fundamental con el anterior, se trata de una energía retirada del fluido, para generar un trabajo por medio del motor de flujo. Y como no dicen nada acerca de las pérdidas de energía, se considera que son despreciables. Lo otro importante a tener en cuenta es que la tubería no es la típica de cédula 40, ni 80. Sino que se trata de una tubería especial, cuyo diámetro interno (el necesario a fin de calcular el área de flujo del fluido) se halla por la siguiente expresión (lógica):

D.I. (en A) = D.O. – 2(e) = 1 – (2*0,065) = 0,87 pulgadas = 0,022098 m. Entonces, AA = *(0,022098m)2/4= 3,83*10-4 m2

D.I. (en B) = [2 - (2*0,065)]*0,0254 m = 0,047498 m, entonces, AB = 1,77*10-3 m2
Aplicando la ecuación de energía entre A y B:



Despejando hr,



Ahora, la velocidad en A se calcula así:

=

Y se reemplaza en la ecuación de hr:



Dando como resultado,



La potencia transmitida por el fluido al motor, se calcula de forma similar a la potencia transmitida por una bomba a un fluido. Es decir:

9,15 kW

Donde Q = uA (En este caso se tomó la velocidad en B y el área en B, pero podría haber sido con uA y AA)
Respuesta: El fluido hidráulico enterga una potencia de 9,15 kW al motor de la figura en esas condiciones.
Conclusiones sobre motores y bombas: Entre mayor sea la diferencia de presiones de A con respecto a B; mayor será la potencia que transmite el fluido a un motor. Pero menor será la potencia que debe transmitir la bomba a un fluido. Así mismo ocurre con las velocidades y las alturas. Pero obviamente, no se van a presentar bombas y motores en el mismo sistema. Lo que puede ocurrir es que si se tiene un gran desnivel entre A y B, no sea necesaria una bomba para que el fluido se mueva, antes por el contrario se puede aprovechar esa energía (potencial) para mover un motor o una turbina, como lo que ocurre en las centrales hidroeléctricas.
En ambos casos las pérdidas son contraproducentes, en este sentido:
*Para bombas: al aumentar las pérdidas, aumenta la carga total sobre la bomba, y por ende la potencia que debe entregas la bomba al fluido para que se mueva, debe ser mayor.
*Para turbinas y motores: al aumentar las pérdidas, disminuye la carga que se retira del fluido, disminuyendo también la potencia que el fluido puede entregar al equipo que sea: motores o turbinas.
BIBLIOGRAFÍA:

Mott, sexta edición, capítulo 7.

similar:

Resumen teórico iconResumen teórico

Resumen teórico iconResumen teórico de Análisis Dimensional

Resumen teórico iconResumen capitulo I: Marco Teórico

Resumen teórico iconEl Marco de Referencia está compuesto por el Marco Teórico, Marco...

Resumen teórico iconPrograma teórico

Resumen teórico iconFundamento teórico

Resumen teórico iconMarco teórico

Resumen teórico iconPrograma teórico

Resumen teórico icon5º teórico de Problemas Epistemológicos

Resumen teórico iconCursos teórico prácticos


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com