descargar 110.27 Kb.
|
UNIDAD III: Técnicas de Conteo III. Técnicas de conteo Introducción Suponga que se encuentra al final de una línea de ensamble final de un producto y que un supervisor le ordena contar los elementos de un lote que se ha manufacturado hace unas horas y del que se desconoce el número de productos que lo constituyen, de inmediato usted empezará a contar un producto tras otro y al final informará al supervisor que son, 48, 54 u otro número cualquiera. Ahora suponga que ese mismo supervisor le plantea la siguiente pregunta ¿cuántas muestras o grupos será posible formar con los productos del lote, si las muestras o grupos a formar son de ocho elementos cada una de ellas?. En el primer caso el cuantificar los elementos del lote no presenta dificultad alguna para la persona encargada de hacerlo, pero cuando se le hace el segundo planteamiento, al tratar de formar las muestras o grupos de ocho elementos la persona encargada empezará a tener dificultad para hacerlo, en casos como este es necesario hacer uso de las técnicas de conteo para cuantificar los elementos del evento en cuestión (el número de muestras posibles a formar de ocho elementos), luego, ¿qué son las técnicas de conteo? Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar. Ejemplos en los que definitivamente haremos uso de las técnicas de conteo serían: -¿Cuántas comisiones pro limpieza del instituto se pueden formar si hay 150 alumnos que desean ayudar en esta tarea y se desea formar comisiones de ocho alumnos? -¿Cuántas representaciones de alumnos pueden ser formadas a) si se desea que estas consten solo de alumnos de Ingeniería Química?, b) se desea que el presidente sea un químico?, c) se desea que el presidente y tesorero sean químicos? Para todos los casos, se desea que las representaciones consten de once alumnos. -¿Cuántas maneras tiene una persona de seleccionar una lavadora, una batidora y dos licuadoras, si encuentra en una tienda 8 modelos diferentes de lavadoras, 5 modelos diferentes de batidoras y 7 modelos diferentes de licuadoras? Se les denomina técnicas de conteo a: las combinaciones, permutaciones y diagrama de árbol, las que a continuación se explicarán y hay que destacar que éstas nos proporcionan la información de todas las maneras posibles en que ocurre un evento determinado. Las bases para entender el uso de las técnicas de conteo son el principio multiplicativo y el aditivo, los que a continuación se definen y se hace uso de ellos. 3.1 Principios Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de; N1 x N2 x ..........x Nr maneras o formas ![]() El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro. Ejemplos:
Solución: Considerando que r = 4 pasos N1= maneras de hacer cimientos = 2 N2= maneras de construir paredes = 3 N3= maneras de hacer techos = 2 N4= maneras de hacer acabados = 1 N1 x N2 x N3 x N4 = 2 x 3 x 2 x 1 = 12 maneras de construir la casa El principio multiplicativo, el aditivo y las técnicas de conteo que posteriormente se tratarán nos proporcionan todas las maneras o formas posibles de como se puede llevar a cabo una actividad cualquiera.
Solución:
Ejercicios:
![]()
3.2 Notación factorial Se usa la notación n! para denotar el producto de los enteros positivos desde 1 hasta n. ![]() ![]() 3.3 Permutaciones Para entender lo que son las permutaciones es necesario definir lo que es una combinación y lo que es una permutación para establecer su diferencia y de esta manera entender claramente cuando es posible utilizar una combinación y cuando utilizar una permutación al momento de querer cuantificar los elementos de algún evento. Combinación: Es todo arreglo de elementos en donde no nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo. Permutación: Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo. Para ver de una manera objetiva la diferencia entre una combinación y una permutación, plantearemos cierta situación. Suponga que un salón de clase está constituido por 35 alumnos. a) El maestro desea que tres de los alumnos lo ayuden en actividades tales como mantener el aula limpia o entregar material a los alumnos cuando así sea necesario. b) El maestro desea que se nombre a los representantes del salón (Presidente, Secretario y Tesorero). Solución:
¿Es importante el orden como se selecciona a los elementos que forma el grupo de tres personas? Reflexionando al respecto nos damos cuenta de que el orden en este caso no tiene importancia, ya que lo único que nos interesaría es el contenido de cada grupo, dicho de otra forma, ¿quiénes están en el grupo? Por tanto, este ejemplo es una combinación, quiere decir esto que las combinaciones nos permiten formar grupos o muestras de elementos en donde lo único que nos interesa es el contenido de los mismos.
Cambios:
Ahora tenemos cuatro arreglos, ¿se trata de la misma representación? Creo que la respuesta sería no, ya que el cambio de función que se hace a los integrantes de la representación original hace que definitivamente cada una de las representaciones trabaje de manera diferente, ¿importa el orden de los elementos en los arreglos?. La respuesta definitivamente sería sí, luego entonces las representaciones antes definidas son diferentes ya que el orden o la forma en que se asignan las funciones sí importa, por lo tanto es este caso estamos tratando con permutaciones. A continuación obtendremos las fórmulas de permutaciones y de combinaciones, pero antes hay que definir lo que es n! (ene factorial), ya que está involucrado en las fórmulas que se obtendrán y usarán para la resolución de problemas. n!= al producto desde la unidad hasta el valor que ostenta n. n!= 1 x 2 x 3 x 4 x...........x n Ejem.
Obtención de fórmula de permutaciones. Para hacer esto, partiremos de un ejemplo. ¿Cuántas maneras hay de asignar los cuatro primeros lugares de un concurso de creatividad que se verifica en las instalaciones de nuestro instituto, si hay 14 participantes? Solución: Haciendo uso del principio multiplicativo, 14x13x12x11 = 24,024 maneras de asignar los primeros cuatro lugares del concurso Esta solución se debe, a que al momento de asignar el primer lugar tenemos a 14 posibles candidatos, una vez asignado ese lugar nos quedan 13 posibles candidatos para el segundo lugar, luego tendríamos 12 candidatos posibles para el tercer lugar y por último tendríamos 11 candidatos posibles para el cuarto lugar. Luego si n es el total de participantes en el concurso y r es el número de participantes que van a ser premiados, y partiendo de la expresión anterior, entonces. 14x13x12x11= n x (n - 1) x (n - 2) x .......... x (n – r + 1) si la expresión anterior es multiplicada por (n – r)! / (n – r)!, entonces = n x (n –1 ) x (n – 2) x ......... x (n – r + 1) (n – r)! / (n – r)! = n!/ (n – r)! Por tanto, la fórmula de permutaciones de r objetos tomados de entre n objetos es: ![]() Esta fórmula nos permitirá obtener todos aquellos arreglos en donde el orden es importante y solo se usen parte (r) de los n objetos con que se cuenta, además hay que hacer notar que no se pueden repetir objetos dentro del arreglo, esto es, los n objetos son todos diferentes. Entonces, ¿ qué fórmula hay que usar para arreglos en donde se utilicen los n objetos con que se cuenta? Si en la fórmula anterior se sustituye n en lugar de r, entonces. nPn= n!/ (n –n)! = n! / 0! = n! / 1 = n! |
![]() | «une page de garde», una guía que define la tarea o el proyecto final a realizar al final de la unidad | ![]() | |
![]() | ![]() | ||
![]() | ![]() | «Desde el principio hasta el final no hay ni una sola cosa recta. Solamente es posible una pregunta: ¿juegas?» | |
![]() | ![]() | ||
![]() | ![]() |