Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones




descargar 152.95 Kb.
títuloLos orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones
página1/4
fecha de publicación27.12.2015
tamaño152.95 Kb.
tipoDocumentos
med.se-todo.com > Química > Documentos
  1   2   3   4



COMPOSICION QUIMICA DE LOS SERES VIVOS



Sergio D. Ifrán - Nancy E. Fernández – Silvia Márquez

INTRODUCCIÓN

Como hemos visto los seres vivos están caracterizados, entre otras cosas, por poseer una organización celular, es decir determinadas moléculas se organizan de una forma particular y precisa e interactúan entre sí para establecer la estructura celular.  Así como las células son los ladrillos con los que se construyen los tejidos y los organismos, las moléculas son los bloques con que se construyen las células.

Al estudiar químicamente estas moléculas observamos que las mismas están constituidas en un 98% por elementos tales como C, H, O, N, P y S; ( el 2 % restante esta representado por elementos como el Fe, Ca , Na, K, Cu, Mg, I, Cl. Etc.)

La combinación de estos seis elementos puede dar lugar a la formación de millones de moléculas distintas, sin embargo como veremos más adelante, la mayoría de los seres vivos está formado por un  número relativamente bajo de tipos de compuestos.

Aquellos compuestos en cuya composición interviene el carbono se los denomina compuestos orgánicos; dentro de este grupo podemos mencionar a los monosacáridos , polisacáridos, aminoácidos, proteínas, lípidos , nucleótidos y ácidos nucleicos ( no son los únicos compuestos orgánicos que existen, pero sí son la mayoría). Estos representan aproximadamente el 30% de la composición química de los seres vivos .  El 70%  lo constituye el agua. También encontramos algunos iones tales como el Na, Fe, Ca, K, etc. en proporciones muy pequeñas.

ÁTOMOS Y MOLÉCULAS

Toda la materia, incluyendo a los seres vivos, esta compuesta por distintos átomos. Un átomo es la partícula más pequeña de materia que puede existir libre conservando las propiedades fisico-químicas características de ese elemento y que es capaz de intervenir en reacciones químicas.

En la estructura del átomo encontramos una región central muy densa formada por dos tipos de partículas los protones y los neutrones.  Ambos le otorgan masa al núcleo, los protones son partículas con carga positiva y los neutrones no están cargados.  Los neutrones contribuyen a mantener la estabilidad del núcleo y también impiden que las cargas de los protones se repelan y provoquen la desintegración del núcleo.

En torno a este núcleo encontramos otras partículas cargadas negativamente llamadas electrones.  Estos electrones giran alrededor del núcleo en zonas denominadas orbitales; los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones. Los orbitales se organizan en niveles de energía. A medida que nos alejamos del núcleo los niveles de energía aumentan, de manera que los electrones cercanos al núcleo poseen menor nivel de energía que los que se encuentran alejados.

Los electrones de los niveles de energía más externos son los que determinan la capacidad de reaccionar químicamente.

En estado elemental o no-combinado el átomo es eléctricamente neutro,  ya que posee igual número de electrones que de protones.

Los átomos de distintos elementos químicos poseen  un número característico de protones.  El número de protones se denomina NUMERO ATOMICO ( Z)

La suma de protones y neutrones (no se tiene en cuenta a los electrones ya que su masa es despreciable) se conoce como NUMERO MASICO (A).



Fig. 2.1 - Dos maneras de representar un átomo. (a) Modelo de Bohr de un átomo de carbono. Aunque este modelo no es un modo preciso de ilustrar la configuración de electrones, es de uso frecuente por su sencillez y conveniencia. (b) Nube de electrones. Los puntos indican las probabilidades de que un electrón esté en un sitio en un momento dado.

Existen átomos que tienen el mismo número de protones pero distinta cantidad de neutrones; si poseen el mismo número de protones y estos son los que les confieren las propiedades químicas, estamos en presencia de átomos del mismo elemento, es decir de ISOTOPOS. ( poseen  el mismo  Z, pero tienen distinto número másico).

Algunos átomos  que raramente reaccionan con otros,  se encuentran formando parte del grupo VIII de la tabla periódica y constituyen los llamados gases nobles o raros.  Este grupo se caracteriza por la baja reactividad de los átomos. Al estudiarse la configuración electrónica (la distribución de los electrones en los distintos niveles de energía) se observa que dichos elementos poseen en su nivel de energía más alto ( el más alejado o externo) ocho electrones.  Es decir que la estabilidad esta dada por esa configuración electrónica (dijimos anteriormente que la capacidad de reaccionar estaba dada por la distribución de los electrones de los niveles más externos). El resto de los átomos no posee esa configuración electrónica por lo tanto son inestables de modo que tienden a reaccionar entre sí.  En general los átomos que reaccionan para formar una molécula tienden a adquirir una configuración  similar a la del gas noble, es decir tienden a completar ocho electrones en su nivel más externo. Esto es conocido como la REGLA DEL OCTETO, pero como toda regla siempre hay excepciones.

UNIONES QUÍMICAS

Una de las fuerzas impulsoras en la naturaleza es la tendencia de la materia a alcanzar el estado de energía libre más bajo posible, este estado de menor energía implica una mayor estabilidad, en las moléculas los núcleos y los electrones de los átomos interactúan, logrando una mayor estabilidad (ya que tratan de adquirir la configuración electrónica de un gas noble).

Los átomos se mantienen unidos formando moléculas por medio de fuerzas, estas  reciben el nombre de  ENLACES O UNIONES QUIMICAS. En las reacciones metabólicas se generan y se degradan continuamente moléculas, es decir que se forman y se rompen  uniones químicas

Unión iónica

Algunos átomos tienden  a ganar o a perder electrones con gran facilidad (debido a su configuración electrónica) formando partículas cargadas que se denominan IONES.  Aquellos átomos que ganan con facilidad electrones  se dice que son electronegativos, formarán entonces iones con carga negativa que se denominan ANIONES.  Si el átomo pierde electrones predominarán las cargas positivas del núcleo y por lo tanto se formarán iones con carga positiva o CATIONES.

En las uniones iónicas los átomos se mantienen unidos debido a las fuerzas de atracción que surgen por tener cargas opuestas (catión – anión).

Los compuestos iónicos se caracterizan por un alto punto de fusión, alto punto de ebullición, en general son solubles en agua, por lo tanto en solución acuosa conducen la corriente eléctrica

Un ejemplo de este tipo de unión lo constituye el cloruro de sodio, el átomo de cloro es mucho más electronegativo (atrae con mucha fuerza a los electrones) que el sodio, de modo que le arranca el electrón del último nivel de energía a éste último.  El cloro se transforma entonces en el anión cloruro, y el sodio en un catión, la atracción eléctrica hace que los iones permanezcan unidos.


Fig. 2.2- Unión iónica : cloruro de sodio

Las uniones iónicas son importantes desde el punto de vista biológico, ya que forman parte de las interacciones entre ácidos nucleicos y proteínas. Sin embargo este tipo de uniones no las encontramos entre los átomos que predominan en la composición química de los seres vivos ( C, H, O, N , S, y P)

Unión Covalente

Algunos átomos no tienen tendencia a ganar o perder electrones, sino que los comparten  con otros átomos.  Cuando la diferencia de electronegatividad  no existe o es muy baja, los átomos que intervienen comparten  electrones.

El gas hidrógeno está compuesto por moléculas de hidrógeno y no por átomos de hidrógeno separados. Una molécula compuesta por dos átomos se llama diatómica.  Cuando un átomo de H se une a otro átomo de H ambos tienen la misma capacidad de atraer electrones, por lo tanto el par compartido se ubicará a igual distancia de ambos núcleos .  Los átomos de H comparten sus electrones para adquirir la configuración del gas noble, los electrones compartidos pertenecen a ambos átomos simultáneamente.

Muchos elementos de importancia biológica son diatómicos ( H, O, F, Cl, etc.)

Esquemáticamente cada par de electrones compartidos se simboliza con una línea, dos átomos pueden compartir 1, 2 o 3 pares de electrones.


Fig. 2.3- Ejemplo de unión covalente

En algunos casos existe una diferencia de electronegatividad entre los átomos que hace que él o los pares de electrones comprar-tidos no se encuentren equidistantes de los núcleos, sino que están más cerca del átomo con mayor electronega-tividad.  De esta forma la distribución de los electrones es asimétrica, creándose zonas donde predominan las cargas negativas de los electrones (cerca del elemento más electronegativo) y zonas donde predominan las cargas positivas de los núcleos (el elemento menos electronegativo, ya que sus electrones están lejos). Este tipo de unión covalente recibe el nombre de  unión covalente polar.



Fig.2.4 - Cloruro de hidrógeno

Este tipo de unión es la que encontramos en la mayor parte de las moléculas biológicas. El carbono (C) se une con los otros elementos (H, O, N, P, S) por medio de uniones covalentes, así como también se une a otros átomos de carbono dando largas cadenas, como veremos más adelante.

Unión puente hidrógeno

Es una unión  sumamente lábil, formándose y destruyéndose continuamente, dependiendo su efecto estabilizador más a la cantidad de dichas uniones, que a la fuerza de atracción entre los átomos. Es muy importante en los sistemas biológicos ya que contribuyen a dar estabilidad a macromoléculas tales como las proteínas, los ácidos nucleicos, etc.

Cuando un átomo de hidrógeno se une a un átomo muy electronegativo ( como ser el oxígeno o el nitrógeno) el par compartido se sitúa lejos del núcleo del hidrógeno , por lo tanto se crea una pequeña separación de cargas, quedando el hidrógeno ligeramente positivo (d+)y el oxigeno o el nitrógeno levemente negativo (d -).  (d Indica la separación parcial de cargas). La d+ del hidrógeno es atraída por la d- del elemento electronegativo de otra molécula, de manera que el H queda formando un puente entre dos moléculas.



Fig. 2.5- Enlace de hidrógeno. El átomo de Nitrógeno de una molécula de amoniaco (NH3) está unido a un átomo de hidrógeno de una molécula de agua (H2O) por un enlace de hidrógeno. En este último, un átomo de hidrógeno combinado con un átomo electronegativo en un enlace covalente polar es compartido por otro átomo electronegativo por medio de una atracción eléctrica débil.

Fuerzas de Van der Waals

Son fuerzas de atracción inespecíficas que ocurren cuando los átomos se encuentran a distancias pequeñas y cuando momentáneamente  se forman diferencias de cargas en torno al átomo debido a los movimientos de los electrones. Esta distribución de carga fluctuante da al átomo una polaridad: una parte de él tiene una carga ligeramente negativa respecto a las demás que quedan ligeramente positivas de manera que una zona negativa momentánea de un átomo interactúa con una positiva de otro.  Estas interacciones son aproximadamente 100 veces más débiles que las uniones covalentes; sin embargo son muy importantes porque se pueden establecer cientos de interacciones simultáneas, manteniendo a las moléculas juntas con bastante cohesión.

Este tipo de interacción juega un papel muy importante en la unión de los sustratos a las enzimas.

Interacciones hidrofóbicas

También son importantes en las propiedades biológicas de distintas moléculas. Estas interacciones ocurren porque las moléculas no polares tienden a agruparse cuando están en un medio acuoso para repeler el agua o “esconderse” de ella.  Ciertas moléculas presentan partes que se pueden intercalar con el agua (partes hidrofílicas) a parte de las porciones hidrofóbicas , de manera que las zonas hidrofílicas establecen contacto con el agua y las zonas hidrofóbicas quedan resguardadas en el interior  ( adoptan en general una forma esférica), este tipo de ordenamiento estabiliza la estructura de la macromolécula, contribuyendo a mantener su conformación activa.

Estas interacciones tiene importancia en el plegamiento de las proteínas y en la asociación entre una enzima  con su sustrato

Reacciones químicas

Dijimos que los átomos reaccionan entre sí formando moléculas (reacciones químicas), estas reacciones se representan por medio de ecuaciones químicas, en donde se colocan los reactivos (materia prima) y los productos de la reacción y el sentido de la reacción.

Estas ecuaciones químicas se balancean de manera que la cantidad de átomos  de un elemento en ambos lados de la ecuación, es la misma.

 
Existen distintos tipos de reacciones químicas, las cuales pueden ocurrir tanto en los seres vivos como  “ in vitro”.  En el metabolismo se llevan a cabo reacciones de oxido-reducción o redox, reacciones de adición, de disociación , etc.

COMPOSICIÓN QUIMICA DE LOS SERES VIVOS

Todas las células están gobernadas por los mismos principios físicos y químicos de la materia inerte. Si bien dentro de las células encontramos moléculas que usualmente no existen en la materia inanimada, en la composición química de los seres vivos encontramos desde sencillos iones inorgánicos,  hasta complejas macromoléculas orgánicas siendo todos igualmente importantes para constituir , mantener y perpetuar el estado vivo.



Cuadro 2.1- Composición química de la materia viva




Compuesto

Porcentaje de peso total

* Constituido aproximadamente por 1% de ADN y 6% de ARN.

**Incluyen los bloque de construcción para generar macromoléculas y otras moléculas en los procesos de síntesis o degradación

Agua

70

Macromoléculas:

 

Proteínas

15

Ácidos Nucleicos

7*

Polisacáridos

3

Lípidos

2

Molécula s orgánicas pequeñas

2**

Iones inorgánicas

1
  1   2   3   4

similar:

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconLos orbitales atómicos orbitan alrededor del núcleo de un átomo....

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconIndica las zonas donde se produce cada sustancia completando sobre el espacio

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconCuando un átomo pierde electrones (los electrones de sus orbitales...

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconHay un flujo de electrones destinado a volver a los dos cuerpos al...

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconLas propiedades de los elementos dependen, sobre todo, de cómo se...

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconComo ejemplo de sistema operativo de núcleo monolítico están
«no esencial», en espacio de núcleo para que éste se ejecute más rápido de lo que lo haría si estuviera en espacio de usuario

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconPlagas de mosquitos, cucarachas y hormigas
«uñas frágiles», que se rompen con mayor facilidad e incluso se abren. Otros trastornos habituales son los uñeros, inflamaciones...

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconLa corteza, el manto y el núcleo son las tres capas que componen...
«horno» que existe en su interior, está compuesta por rocas. Si coges un fragmento de roca y lo miras, verás que no es liso y que...

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconLa corteza, el manto y el núcleo son las tres capas que componen...
«horno» que existe en su interior, está compuesta por rocas. Si coges un fragmento de roca y lo miras, verás que no es liso y que...

Los orbitales son las zonas del espacio cercana al núcleo donde hay mayor probabilidad de encontrar electrones iconLos fotones son las partículas “fundamentales” de la luz, así como...


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com