descargar 237.47 Kb.
|
Otros procesos que nos permiten el mismo resultado
4.2. REACCIONES DE LOS ALQUENOS Y CICLOALQUENOS
Hidrogenación de Alquenos. Los alquenos reaccionan con hidrógeno en presencia de un catalizador adecuado para formar productos de adición. Los alcanos saturados correspondientes. Platino y paladio son los dos catalizadores utilizados para la mayoría de las hidrogenaciones de alquenos. El paladio suele emplearse finamente dividido y con un mineral inerte, como carbón, a manera de soporte para maximizar el área superficial (Pd/C). El platino se emplea generalmente como PtO2, reactivo llamado catalizador de Adams.
La reacción de hidrogenación ha resultado difícil de estudiar mecanísticamente. Sin embargo, la experiencia ha demostrado que la hidrogenación suele ocurrir con estereoquímica sin; ambos hidrógenos se unen al doble enlace desde la misma cara. El primer paso de la reacción es la adsorción del hidrógeno en la superficie del catalizador. Después se forma un complejo entre el catalizador y el alqueno mediante la superposición de orbitales vacantes del metal con el orbital pi lleno del alqueno, a continuación el producto saturado se separa del catalizador. Hidrohalogenación. El protón de ácido fuerte puede adicionarse a un doble enlace para dar una carbocatión, mediante un ataque electrofílico y posterior captura por el nucleófilo (X-). Para la reacción se requieren temperaturas bajas, para evitar transposiciones. Si los carbonos del alqueno no están igualmente sustituidos, el protón del haluro ataca al carbono menos sustituido, dejando de esa manera un carbocatión más estable y en consecuencia el halógeno tiende hacia el carbono más sustituido. Este hecho se denomina regla de markovnikov Mecanismo de adición electrofílico de HX a alquenos. ![]() Ejemplos:
Adiciones radicalarias sobre los alquenos: formación del producto anti-Markovnikov. El bromuro de hidrógeno puede adicionarse de forma anti-Markovnikov a los alquenos: en un nuevo mecanismo, el mecanismo de esta reacción de adición no sigue una secuencia iónica, sino una más rápida en cadena radicalaria. La condición es tratar al alqueno en HBr y presencia de un peróxido. Mecanismo de hidrobromación radicalario: ![]() ![]() ![]() El cloruro de hidrógeno (HCl) y el yoduro de hidrógeno (HI) no dan productos de adición anti-Markovnikov con los alquenos debido a una cinética desfavorable. Halogenación de alquenos Los reactivos que no contienen átomos electrófilos pueden atacar electrofílicamente a los dobles enlaces. Un ejemplo es la halogenación de los alquenos, que tiene lugar con adición al doble enlace de dos átomos de halógeno para dar un dihaluro vecinal. Esta reacción va bien con el cloro y el bromo. El flúor reacciona demasiado violentamente y la formación de un diyoduro es neutra desde el punto de vista termodinámico. La estereoquímica de la adición es anti (trans). ¿Cuál es el mecanismo que explica esta estereoquímica? ¿Cómo ataca el halógeno al doble enlace rico en electrones, si parece que no contiene ningún centro electrófilo?. La nube electrónica π del alqueno es nucleófila y ataca a un extremo de la molécula de halógeno con desplazamiento simultáneo del segundo halógeno como anión haluro. El intermedio que resulta es un ión halonio cíclico. Un posterior ataque nucleófilo del X- vía una SN2 por la cara contraria al ión halonio explica claramente una adición anti. Cuando los iones halonio son simétricos, el ataque es igualmente probable en cualquiera de los dos átomos de carbono, dando por lo tanto el producto racémico. Mecanismo de halogenación.
Ejemplos:
¿El ión halonio puede reaccionar con otros nucleófilos?. En presencia de otros de otros nucleófilos, el ión haluro competirá con ellos para atrapar al ión halonio cíclico. Por ejemplo la bromación del ciclopenteno en presencia de un exceso de ión cloruro (añadido como sal) da una mezcla de trans-1,2-dibromociclopentano y trans-1-bromo-2-ciclopentano. ![]() De este mismo modo se pueden explicar la formación de las halohidrinas y haloéteres vecinales. Ejemplos: ![]() Ciclopenteno trans-2-Bromociclopentanol ![]() Ciclohexeno Trans-1-bromo-2-metoxiciclohexano Hidratación electrófila En la reacción global, los elementos del agua se han adicionado al doble enlace, o sea, ha tenido lugar una hidratación. Este proceso es el inverso de la deshidratación de alcoholes inducida en medio ácido. El mecanismo es el mismo pero a la inversa.
Hidroboración-oxidación. El resultado global de una hidroboración-oxidación, es la adición de agua a un doble enlace. Al contrario de las hidrataciones descritas anteriormente, esta es anti-Markovnikov. El borano, BH3, se adiciona al doble enlace sin activación catalítica. Esta reacción se denomina hidroboración. La hidroboración, además de ser estereoespecífica (adición sin), es también regioselectiva. Al contrario de las adiciones electrófilas descritas con anterioridad, sólo controlan la regioselectividad los factores estéricos (y no los electrónicos): el boro se une al carbono menos impedido (menos sustituido). La posterior oxidación del producto de hidroboración con peróxido de hidrógeno en medio básico acuoso, da lugar a la oxidación del alquilborano, produciendo la formación del alcohol. Mecanismo propuesto:
Ejemplos:
Hidroboración-halogenación: hidrohalogenación anti-Markovnikov Los alquilboranos también pueden ser precursores de haloalcanos. El resultado global de esta hidroboración-halogenación es la hidrohalogenación de un alqueno de forma regioselectiva y estereoespecífica. El halógeno, al contrario de las adiciones Markovnikov, se coloca en el carbono menos sustituido. Ejemplos.
Epoxidación de alquenos El grupo -OH de los ácidos peroxicarboxílicos, RCO3H, contienen un oxígeno electrófilo. Estos compuestos reaccionan con los alquenos, adicionando este oxígeno al doble enlace con formación de oxaciclopropanos. El otro producto de la reacción es el ácido carboxílico, que se elimina mediante extracciones con base acuosa. (Véase el mecanismo en el capítulo formación de epóxidos). Dihidroxilación anti vecinal (Formación de dioles trans)
Dihidroxilación sin vecinal (Formación de dioles cis). El permanganato potásico reacciona, en solución fría, con los alquenos para dar los correspondientes dioles vecinales sin. El otro producto de esta reacción es el dióxido de manganeso, que es un oxidante débil e insoluble en el medio de reacción. En estas condiciones neutras el MnO2 no reacciona ni con el alqueno ni con el diol. ¿Cuál es el mecanismo de esta transformación? La reacción del enlace π con permanganato constituye una adición concertada con movimiento simultáneo de tres pares de electrones para dar un éster cíclico que contiene Mn(V). Por razones estéricas, la única manera de formarse el producto es cuando los dos átomos de oxígeno se introducen por el mismo lado del doble enlace: sin. Este intermedio es reactivo y en presencia de agua se hidroliza para dar el diol libre. La dihidroxilación sin puede conseguirse con mejores rendimientos usando tetróxido de osmio OsO4, muy similar al permanganato en su modo de acción. Si se utilizan en cantidades estequiométricas se pueden aislar los ésteres cíclicos, pero normalmente estos se reducen con H2S o bisulfito, NaHSO3. Sin embargo, al ser el OsO4 caro y muy tóxico se utilizan cantidades catalíticas en presencia de cantidades estequiométricas de peróxido de hidrógeno. Mecanismo de oxidación de los alquenos con permanganato: ![]() Dihidroxilación vecinal sin con tetróxido de osmio. ![]() Reacción de ozonolisis de alquenos. En todas las reacciones de adición de alquenos que se han considerado hasta aquí, el esqueleto carbonado del material de partida ha permanecido intacto. El doble enlace carbono-carbono se ha transformado en nuevos grupos funcionales, por adición de diferentes reactivos, pero no han roto o transpuesto enlaces del esqueleto de carbono. Sin embargo existen reactivos fuertemente oxidantes que rompen los enlaces carbono- carbono para producir dos fragmentos. El ozono (O3) es el reactivo más útil para la ruptura de dobles enlaces. Este compuesto que se elabora convenientemente en el laboratorio haciendo pasar oxígeno a través de una descarga eléctrica de alto voltaje, se une rápidamente a los alquenos a bajas temperaturas para formar intermedios cíclicos llamados molozónidos. Una vez formados, los molozónidos se transponen con rapidez para formar ozónidos. Los ozónidos son explosivos, y por tanto nunca se aíslan, sino que suelen tratarse con un agente reductor, como zinc metálico en ácido acético, para transformarse en compuestos carbonílicos. Reacción de ozonólisis. ![]() Alqueno Ozónido Productos carbonílicos Mecanismo de la ozonólisis: ETAPA 1. Formación y ruptura del molozónido ![]() Molozónido Oxido de carbonilo ETAPA 2. Formación y reducción del ozónido ![]() Ejemplos.
Ozonolisis a alcoholes (Ozonoliss reductiva) Al tratar el ozónido con borohidruro sódico se obtienen alcoholes. De esta forma, un doble enlace puede romperse oxidativamente para producir alcoholes, estamos hablando de una ozonólisis reductiva. ![]() 4-Octeno 1-Butanol (95%)
Adición de Carbenos a Alquenos: Síntesis de Ciclopropanos. La última reacción de adición a alquenos que se considerará en esta sección es la adición de un carbeno a un alqueno para producir un ciclopropano. Un carbeno R2C: , es una molécula neutra que contiene un carbono divalente con sólo seis electrones en su capa de valencia. Por ello es altamente reactivo, y sólo puede generarse sólo como un intermediario de reacción, no como una sustancia aislable. Uno de los mejores métodos para generar un carbeno sustituido es el tratamiento de cloroformo, CHCl3, con una base fuerte como hidróxido de potasio. La pérdida de un protón del CHCl3 genera el anión triclorometano, -:CCl3, el cual libera un ión cloruro para convertirse en diclorocarbeno, :CCl2. Si se genera diclorocarbeno en presencia de un doble enlace, ocurre la adición del carbeno, electrófilo, al doble enlace, y se forma un diclorociclopropano. La adición es estereoespecífica, lo cual significa que se forma un solo estereoisómero como producto. Ejemplo:
El mejor método para producir ciclopropanos no halogenados es la reacción de Simmons -Smith. Ejemplo: ![]() Ciclohexeno Biciclo (4.1.0) heptano (92%) |