Procesos de oxidación reducción Reacciones de oxidación-reducción




descargar 54.89 Kb.
títuloProcesos de oxidación reducción Reacciones de oxidación-reducción
fecha de publicación22.08.2016
tamaño54.89 Kb.
tipoDocumentos
med.se-todo.com > Química > Documentos
HIDROGEOQUíMICA


Procesos de oxidación reducción
Reacciones de oxidación-reducción

Muchas reacciones químicas que tienen lugar en el medio acuático y en especial en el sistema de las aguas subterráneas, implican trasferencia de electrones entre constituyentes disueltos, gases o sólidos. Como resultados de estas transferencias se producen cambios en los estados de oxidación-reducción de los reaccionantes y los productos (Appelo y Postma, 1993).

Los elementos de valencia múltiples son susceptibles de intervenir en las reacciones de oxidación-reducción, mediante las cuales una molécula se reduce (oxidante) al tomar los electrones que le cede la otra (reductora), la cual se oxida. La reacción también es capaz de proceder en dirección contraria, de modo que este proceso se puede representar mediante la ecuación de equilibrio siguiente: Oxidante + ne = Reductor, donde ambas moléculas (oxidante-reductor) constituyen un par redox. El proceso ocurre con la intervención de ambos tipos de moléculas, una oxidante y otra reductora, para que se pueda producir el intercambio de electrones. La reacción es más representativa mediante la interacción de dos sistemas redox:

La fortaleza del par redox se mide por el potencial de oxidación-reducción o potencial redox, mediante la ecuación de Nerst:

(8.1)

donde, Eh es el potencial de oxidación-reducción o potencial redox; Ehº es una constante que depende de la naturaleza del oxidante y del reductor y se refiere a las condiciones estándares; F es la Constante de Faraday y n es el número de electrones intercambiados. Si se expresa el logaritmo en forma decimal, se obtiene:

(8.2)

El potencial de oxidación-reducción se mide en voltios o milivoltios, a través de milivoltímetros de campo es posible obtener este valor en las aguas naturales.

La proporción de iones presentes en solución en forma de uno u otro de los estados de oxidación-reducción se puede deducir a partir de la fórmula (8.2).

Aunque las soluciones acuosas no contienen electrones libres, también es conveniente expresar el proceso de oxidación-reducción mediante un par redox, como si estas reacciones se produjeran por separado. Además, se suele utilizar la magnitud pe para describir la actividad relativa de los electrones. Por definición:

pe = - log (e) (8.3)

El pe es una magnitud adimensional análoga a la expresión pH, utilizada para describir la actividad del protón o ion hidrógeno. El pe de una solución mide su tendencia oxidante o reductora. Esta magnitud está relacionada con el Eh por la expresión.

(8.4)

A 25 oC, Eh = 0.059 pe (8.4a).

Diagramas Eh – pH


Estos diagramas constituyen una herramienta útil que permiten mostrar las relaciones de equilibrio entre fases sólidas y líquidas presentes en un determinado estado de oxidación – reducción sobre la base de los valores del Eh o pe y el pH de la muestra analizada.

En el sistema Fe – O –H2O -S a 25 oC, a valores de pe altos (positivos) las especies del azufre se encuentran en forma de SO42- y las del hierro en forma de Fe2O3 (que por ser insoluble en el agua es arrastrado por ésta en los sedimentos que arrastra), mientras que a valores más bajos de pe (inferiores a – 0. 2 V) las especies de azufre más comunes son H2S (pH menor de 7) y HS- (pH mayor de 7) y las del hierro se encuentran en forma de FeS2 en todo el intervalo de pH.
Para calcular las ecuaciones que definen el sistema de equilibrios Fe – O –H2O –S a 25 oC, es necesario considerar, para cada ecuación de equilibrio de tipo:

a A + b B = c C + d D (8.5)

involucrada en el sistema, las expresiones del potencial químico y de las energías libres de Gibbs.

La energía libre de Gibbs por mol de reacción, Gr es la diferencia entre las energías libres de Gibbs de los productos y de los reaccionantes:

Gr =  Gr Productos - Gr Reaccionantes (8.5)

la cual, en el equilibrio es equivalente a:

(8.6)

A continuación se calculan los límites de los diferentes campos de estabilidad del sistema:

Antes de que se calculen los límites de los sistemas que involucran al azufre elemental (o cualquier sulfuro), se debe asignar un valor  S. En este caso se usará  S =10-2 como ejemplo. Por encima los límites SO42- - H2S o SO42--HS-, todo el azufre disuelto debe encontrarse en forma de sulfato, de que se puede asumir que:

Por debajo de este límite y a pH menor de 7, aH2S1 mientras que a pH7, a HS-1. Esto tiene lugar muy cerca de las fronteras entre estas fases, lo cual constituye una simplificación de poco uso.

Los límites en los diagramas Eh o pe vs pH, se calculan a partir de las siguientes ecuaciones:

Sistema: H2S - SO42-

SO42- + 8 e- + 10 H+ = H2S + 4 H2O (8.7)
log Keq = log () + 8 pe + 10 pH (8.8)

Considerando una relación de actividades igual a 1 y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pe = 5.08 - pH (8.9)

Sistema: HS- - SO42-

SO42- + 8 e- + 9 H+ = HS- + 4 H2O (8.10)
log Keq = log () + 8 pe + 9 pH (8.11)

Considerando una relación de actividades igual a 1 y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pe = 4.2 - pH (8.12)

Sistema: H2S - HS-

H2S = H+ + HS- (8.13)

log Keq = log () – pH (8.14)

Considerando una relación de actividades igual a 1 y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pH = 6.99 (8.15)

Sistema: SO42- - S

SO42- + 6 e- + 8 H+ = S (S) + 4 H2O (8.16)

log Keq = log () (8.17)

log Keq = 6 pe + 8 pH – log (a) (8.18)

Considerando a = 10-2 y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pe = 5.62 - pH (8.19)

En este límite, la actividad de las especies de azufre disuelto en equilibrio con el azufre sólido es 10-2. Por debajo de este límite, las actividades en equilibrio de las especies de azufre son menores que 10-2. Así en la medida que los valores de  S decrecen, el tamaño del campo de estabilidad del azufre sólido se hace más pequeño.

Sistema: S - H2S

S (S) + 2 e- + 2 H+ = H2S (8.20)

Keq = () (8.21)

log Keq = log (a) + 2 pe + 2 pH (8.22)

Considerando a = 10-2 y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pe = 3.44 – pH (8.23)

Donde los límites convergen con el límite SO42-- H2S, se requieren cálculos más precisos debido a que ambas especies, H2S y SO42-.

El límite SO42- y S0 es probablemente el más importante límite redox en la química de las aguas naturales. Para muchos metales de transición este representa, aproximadamente, la línea que divide cuando son estables los óxidos, carbonatos o iones solubles de cuando son estables los sulfuros insolubles (considerando la presencia de algún sulfuro). La reducción de sulfatos tiene también un mayor impacto en los sistemas biológicos,

El límite superior de la pirita está dado por el límite entre FeS2 o Fe2+ o Fe2O3. Los sulfuros de hierro se encuentran presentes en concentraciones extremadamente pequeñas de especies de sulfuros disueltas, de modo que podemos anticipar que el límite superior de estabilidad de piritas puede encontrarse por encima del límite de sulfato-sulfuro, lo cual es correcto SO42 -=  S a un límite de pirita.

Sistema: Fe2+ - FeS2

2 SO42- + Fe2+ + 16 H+ + 14 e- = FeS2 + 8 H2O (8.24)

Keq = () (8.25)

log Keq = 14 pe + 16 pH - 2 log (a) – log (a) (8.26)

considerando a = 10-2 y a = 10-6, y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pe = 5.49 - pH (8.27)

Sistema: Fe2O3 - FeS2

4 SO42- + Fe2O3 + 38 H+ + 30 e- = 2 FeS2 + 19 H2O (8.28)

Keq =() (8.20)

log Keq = 30 pe + 38 pH – 4 log (a) (8.30)

considerando a = 10-2 y calculando Keq a partir de los valores de entalpía de formación correspondientes, se obtiene:

pe = 6.27 - pH (8.31)

El azufre en la pirita se encuentra en un estado de oxidación formal superior que en H2S o el equivalente FeS. Así a bajos valores de pe, la pirita se hace inestable con respecto al Fe2+ a bajos pH.

(8.32)

e inestable con respecto a FeS a altos pH

(8.33)

Los límites representan las reacciones anteriores, ploteadas por debajo de pH y por encima de pH 11 respectivamente, en el diagrama de estabilidad a valores de  S =10-2 (Drever, 1988). los límites más bajos en la curva de estabilidad, correspondiente a la formación de pirita no parecen importantes, pero a medida que  S decrece, el campo de estabilidad de la pirita se contrae y este límite ocurre en una región de pe-pH más típica de las aguas naturales.

En la tabla 8.1 se resumen las expresiones calculadas, para diferentes temperaturas:

Tabla 8.1. Equilibrios y Expresiones del diagrama Eh-pH para diferentes temperaturas.


No

Sistemas de fases y Ecuación de equilibrio

Expresión termodinámica

Expresión Eh-pH



1

Sistema: H2S - SO42-
SO42-+8e-+10H+=H2S+4H20


PH < 7

Eh=0.29977-0.07375pH (25 oC) (1)

Eh=0.29988-0.0750pH (30 oC) (2)

Eh=0.29997-0.0775pH (40 oC) (3)


2

Sistema: HS- - SO42-
SO42-+8e-+9H+=HS-+4H20


PH > 7

Eh=0.2483-0.0664pH (25 oC) (4)

Eh=0.2483-0.0675pH (30 oC) (5)

Eh=0.2484-0.06975pH (40 oC) (6)


3

Sistema: H2S- HS-

H2S= H+ +HS-


pH=7.0 (7)

pH=6.9 (8)

pH=6.7 (9)

4

Sistema: Fe2 - FS2
4Fe2O3+4 SO42-+38H++30e-=2FS2+11H2O



a= 10-2, a=10-6

Eh=0.3242-0.06743pH (25 oC) (10)

Eh=0.3297-0.06857pH (30 oC) (11)

Eh=0.3407-0.07086pH (40 oC) (12)

a= 10-1.4; a=10-4.75

Eh=0.3331-0.07086pH (40 oC) (13)


5

Sistema: Fe2O3 - FS2
2 SO42-+Fe2++16H++14e-=FS2+8H20





a= 10-2

Eh=0.3699-0.0747pH (25 oC) (14)

Eh=0.3676-0.076pH (30 oC) (15)

Eh=0.3693-0.0785pH (40 oC) (16)

a= 10-1.4; a=10-4.75

Eh=0.3743-0.0785pH (40 oC) (17)

Consideraciones:

=== 1 ; S = (a+ a+ a+ a+ a+ a)=10-6
Determinación del estado de redox y las especies más estables del sistema Fe – O –H2O -S (a 25 oC) a partir de mediciones de Eh y pH

El potencial de oxidación - reducción en un determinado medio (río, lago, manantial, pozo, etc.) y momento determinado, así como las especies más estables en esas condiciones es de interés para el hidrogeólogo, y puede determinarse mediante mediciones “in situ” de pH y potencial redox, con la ayuda de un diagrama de estabilidad del tipo Eh vs pH. Para los médicos que indican las curas con aguas mineromedicinales, es importante conocer si en el agua de la fuente empleada predominan las especies H2S o HS-, pues la primera es un gas y por tanto, su mejor aplicación es por la vía inhalataria, mientras la segunda es un electrolito y su aplicación es más efectiva por la vía tópica.

En la figura 8.1 se muestra la posición que ocupa en este tipo de diagrama un grupo de aguas minerales sulfuradas muestreadas en diferentes sitios del país, así como las especies más estables para esas condiciones.

A partir de la información que brinda en el diagrama, se puede inferir las siguientes consideraciones:

  1. Las aguas superficiales y subterráneas someras (arroyos y manantiales no sulfurosos de Las Terrazas, Mil Cumbres, Rancho Lucas, Cayajabos y Cajalbana aparecen en la zona de estabilidad de los compuestos más oxidados (SO42-), al igual que una gran parte de los manantiales de San José de los Lagos, Ciego Montero y algunos de Elguea (Belleza y Piscina). Estas aguas no poseen H2S.

  2. En la zona de estabilidad del FeS2 se ubican parte de las muestras de San José de los Lagos con contenidos de H2S relativamente bajos.

  3. En la zona de estabilidad del HS- (pH > 7), se distribuyen las aguas minerales de Las Terrazas (algunas en el límite con la zona de estabilidad del FeS2 o dentro de la misma), Soroa, Mil Cumbres sulfuroso y El Sitio.

  4. En la zona de estabilidad del H2S (pH < 7), se localizan las aguas minerales de San Diego de los Baños, Los Bermejales y el resto de las aguas de Elguea.


Figura 8.1. Relación entre el potencial redox y el pH.


CONTRIBUCIONES SOBRE ELTEMA

Los procesos de oxidación reducción se discuten en el libro hidroquímica del karst (Capítulo 1 - Parte 1. Química del Agua kárstica).

Fagundo., J.R. Química del Agua. En Hidroquímica del Karst. Fagundo, J.R., J.J. Valdés y J.E. Rodríguez. (editores). Univ. Granada (España), 14-124, 1996. (hidroquimica del karst.pdf)

Algunos resultados de la aplicación de estos principios, en el caso de las aguas minerales se presentan en los siguientes artículos:

Principales contribuciones

González, P., J.R. Fagundo, G. Benítez, M. Suárez y J. Ramírez. Influencia de la reducción de sulfatos en los procesos de disolución y precipitación de carbonatos en un acuífero cársico costero. Ingeniería Hidráulica, 20 (3), 41-46, 1999. (Geoquimica Guira IH Patricia.pdf)

Fagundo, J.R., P. González, M. Suárez, J. Fagundo-Sierra, C. Melián. Origen y composición química de las aguas minerales sulfuradas de Cuba. Su relación con el medio ambiente geológico. En: Contribución a la Educación y la Protección Ambiental, isctn, Vol. 3, 18 pp, 2002. (96_HTM.pdf)

Fagundo J.R., P. González , M. Suárez, C. Melián. Relaciones entre potenciales redox y concentraciones de sulfuros en aguas termales de Cuba. Contribución a la Educación y Protección Ambiental. ISCTN, Vol 6, Q 31-44, 2005. (39a.doc)
Otras contribuciones
Fagundo, J.R., P. González, M. Llerena, M. Suárez, C. Melián, R. Peláez. Geoquímica de las aguas minerales sulfuradas de la sierra del Rosario (Pinar del Río, Cuba). Memorias de la Convención TROPICO 2004, 21 pp 2004. (TropicoG9-A23.pdf).

Fagundo J.R., P. González, M. Suárez. Relaciones entre potenciales redox y concentraciones de sulfuros en aguas termales de Cuba. 20 pp., 2005. Inédito. (Potencial redox.doc)

Fagundo, J.R., P. González, M. Suárez, J. Fagundo-Sierra, C. Melián. Aplicaciones de la Química - Física en la Hidrogeología. I. Aproximación termodinámica, 24 pp. Inédito. (Qf en H Aproximación termodinámica.pdf)


similar:

Procesos de oxidación reducción Reacciones de oxidación-reducción iconReacciones de transferencia de electrones (Oxidación-Reducción)

Procesos de oxidación reducción Reacciones de oxidación-reducción iconUnidad reacciones de oxidacióN –reduccióN 2º bach química

Procesos de oxidación reducción Reacciones de oxidación-reducción iconReacciones de óxido reducción o redox: Son aquellas reacciones en...

Procesos de oxidación reducción Reacciones de oxidación-reducción iconOxidación reduccióN

Procesos de oxidación reducción Reacciones de oxidación-reducción icon¿Qué es una reacción de Oxidación ó Reducción?

Procesos de oxidación reducción Reacciones de oxidación-reducción icon10 Valencia;Oxidación-Reducción; Balanceo deReacciones;Pesos Equivalentes

Procesos de oxidación reducción Reacciones de oxidación-reducción iconTodo proceso de oxidación va unido necesariamente a otro de reducción

Procesos de oxidación reducción Reacciones de oxidación-reducción iconEl fuego es una reacción química de oxidación reducción fuertemente...

Procesos de oxidación reducción Reacciones de oxidación-reducción iconÓxido reducción método del cambio del número de oxidación prof. Carlos R. Salas Carmona n

Procesos de oxidación reducción Reacciones de oxidación-reducción iconA) Escriba las semirreacciones de oxidación y reducción para los...


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com