En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso




descargar 16.05 Kb.
títuloEn un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso
fecha de publicación24.08.2016
tamaño16.05 Kb.
tipoDocumentos
med.se-todo.com > Química > Documentos
Estrellas

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la estrella. Por ello, el equilibrio se mantendrá esencialmente en las mismas condiciones, en la medida en que la estrella mantenga el ritmo de producción energética. Pero dicho ritmo, como se explica luego, cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro, que se conocen como evolución de la estrella.

La energía que disipan en el espacio estas esferas de gas, son en forma de radiación electromagnética, neutrinos y viento estelar; y nos permiten observar la apariencia de las estrellas en el cielo nocturno como puntos luminosos y, en la gran mayoría de los casos, titilantes.

Debido a la gran distancia que suelen recorrer las radiaciones estelares, estas llegan débiles a nuestro planeta, siendo susceptibles, en la gran mayoría de los casos, a las distorsiones ópticas producidas por la turbulencia y las diferencias de densidad de la atmósfera terrestre (seeing). El Sol, al estar tan cerca, se observa no como un punto sino como un disco luminoso cuya presencia o ausencia en el cielo terrestre provoca el día o la noche respectivamente.

Mientras las interacciones se producen en el núcleo, éstas sostienen el equilibrio hidrostático del cuerpo y la estrella mantiene su apariencia iridiscente predicha por Niels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se prolonga en el tiempo, los átomos de sus partes más externas comienzan a fusionarse. Esta región externa, al no estar comprimida al mismo nivel que el núcleo, aumenta su diámetro. Llegado cierto momento, dicho proceso se paraliza, para contraerse nuevamente hasta el estado en el que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta etapa el cuerpo entra en la fase de colapso, en la cual las fuerzas en pugna —la gravedad y las interacciones de fusión de las capas externas— producen una constante variación del diámetro, en la que acaban venciendo las fuerzas gravitatorias cuando las capas más externas no tienen ya elementos que fusionar.

Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de su masa total, la fusión entrará en un proceso degenerativo al colapsar por vencer a las fuerzas descritas en el principio de exclusión de Pauli, produciéndose una suLas estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar).

Muchas estrellas, el Sol entre ellas, tienen aproximadamente simetría esférica por tener velocidades de rotación bajas. Otras estrellas, sin embargo, giran a gran velocidad y su radio ecuatorial es significativamente mayor que su radio polar. Una velocidad de rotación alta también genera diferencias de temperatura superficial entre el ecuador y los polos. Como ejemplo, la velocidad de rotación en el ecuador de Vega es de 275 km/s, lo que hace que los polos estén a una temperatura de 10 150 K y el ecuador a una temperatura de 7 900 K.[3]

La mayoría de las estrellas pierden masa a una velocidad muy baja. En el Sistema Solar unos 1020 gramos de materia estelar son expulsados por el viento solar cada año. Sin embargo, en las últimas fases de sus vidas, las estrellas pierden masa de forma mucho más intensa y pueden acabar con una masa final muy inferior a la original. Para las estrellas más masivas este efecto es importante desde el principio. Así, una estrella con 120 masas solares iniciales y metalicidad igual a la del Sol acabará expulsando en forma de viento estelar más del 90% de su masa para acabar su vida con menos de 10 masas solares.[4] Finalmente, al morir la estrella se produce en la mayoría de los casos una nebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así la metalicidad del Universo.

Las estrellas pueden estar ligadas gravitacionalmente unas con otras formando sistemas estelares binarios, ternarios o agrupaciones aún mayores. Una fracción alta de las estrellas del disco de la Vía Láctea pertenecen a sistemas binarios; el porcentaje es cercano al 90% para estrellas masivas[5] y desciende hasta el 50% para estrellas de masa baja.[6] Otras veces, las estrellas se agrupan en grandes concentraciones que van desde las decenas hasta los centenares de miles o incluso millones de estrellas, formando los denominados cúmulos estelares. Estos cúmulos pueden deberse a variaciones en el campo gravitacional galáctico o bien pueden ser fruto de brotes de formación estelar (se sabe que la mayoría de las estrellas se forman en grupos). Tradicionalmente, en la Vía Láctea se distinguían dos tipos: (1) los cúmulos globulares, que son viejos, se encuentran en el halo y contienen de centenares de miles a millones de estrellas y (2) los cúmulos abiertos, que son de formación reciente, se encuentran en el disco y contienen un número menor de estrellas. Desde finales del siglo XX esa clasificación se ha cuestionado al descubrirse en el disco de la Vía Láctea cúmulos estelares jóvenes como Westerlund 1 o NGC 3603 con un número de estrellas similar al de un cúmulo globular. Esos cúmulos masivos y jóvenes se encuentran también en otras galaxias; algunos ejemplos son 30 Doradus en la Gran Nube de Magallanes y NGC 4214-I-A en NGC 4214.

todas las estrellas mantienen lazos gravitatorios estables; algunas, igual que el Sol, viajan solitarias, separándose mucho de la agrupación estelar en la que se formaron. Estas estrellas aisladas obedecen, tan solo, al campo gravitatorio global constituido por la superposición de los campos del total de objetos de la galaxia: agujeros negros, estrellas, objetos compactos y gas interestelar.

[editar] Distribución estelarLas estrellas no están distribuidas uniformemente en el Universo, a pesar de lo que pueda parecer a simple vista, sino agrupadas en galaxias. Una galaxia espiral típica (como la Vía Láctea) contiene cientos de miles de millones de estrellas agrupadas, la mayoría, en el estrecho plano galáctico. El cielo nocturno terrestre aparece homogéneo a simple vista porque sólo es posible observar una región muy localizada del plano galáctico. Extrapolando de lo observado en la vecindad del Sistema Solar, se puede decir que la mayor parte de estrellas se concentran en el disco galáctico y dentro de éste en una región central, el bulbo galáctico, que se sitúa en la constelación de Sagitario.

Véanse también: Galaxia, cúmulo estelar y estrellas binarias

[editar] La navegación espacial y el posicionamiento estelarA pesar de las enormes distancias que separan las estrellas, desde la perspectiva terrestre sus posiciones relativas parecen fijas en el firmamento. Gracias a la precisión de sus posiciones, "son de gran utilidad para la navegación, para la orientación de los astronautas en las naves espaciales y para identificar otros astros” (The American Encyclopedia). Fueron la única forma que tuvieron los marinos para situarse en altamar hasta el advenimiento de los sistemas electrónicos de A principios del siglo XX la ciencia se preguntaba cuál era la fuente de la increíble energía que alimentaba las estrellas. Ninguna de las soluciones conocidas en la época resultaba viable. Ninguna reacción química alcanzaba el rendimiento necesario para mantener la luminosidad que despedía el Sol. Asimismo, la contracción gravitatoria, si bien resultaba una fuente energética más, no podía explicar el aporte de calor a lo largo de miles de millones de años. Sir Arthur Eddington fue el primero en sugerir en la década de 1920 que el aporte de energía procedía de reacciones nucleares. Existen dos tipos de reacciones nucleares, las de fisión y las de fusión. Las reacciones de fisión no pueden mantener la luminosidad de una estrella debido a su relativamente bajo rendimiento energético y, sobre todo, a que requieren elementos más pesados que el hierro, los cuales son poco abundantes en el Universo. El primer mecanismo detallado de reacciones nucleares de fusión capaces de mantener la estructura interna de una estrella fue descubierto por Hans Bethe en 1938, es válido para estrellas de masa intermedia o elevada y lleva el nombre de su descubridor (ciclo de Bethe o ciclo CNO).

Nebulosa planetaria M-57, ampliamente conocida como Nebulosa del Anillo. Su diámetro es de aproximadamente un año-luz. Tambien conocida por "Eye of God" (en español, el ojo de Dios).

Imagen de la estrella altamente masiva Eta Carinae, capturada por el telescopio espacial Hubble de la NASA. Las nebulosas circundantes tienen un diámetro longitudinal de aproximadamente 0,5 años luz.

Aun así, resultó que las temperaturas que se alcanzan en los núcleos de las estrellas son demasiado bajas como para fusionar los iones. Ocurre que el efecto túnel permite que dos partículas con energías insuficientes para traspasar la barrera de potencial que las separa tengan una probabilidad de saltar esa barrera y poderse unir. Al haber tantas colisiones, estadísticamente se dan suficientes reacciones de fusión como para que se sostenga la estrella pero no tantas reacciones como para hacerla estallar. Existe un óptimo de energía para el cual se dan la mayoría de reacciones que resulta del cruce de la probabilidad de que dos partículas tengan una energía determinada E a una temperatura T y de la probabilidad de que esas partículas se salten la barrera por efecto túnel. Es el llamado pico de Gamow.

Una gran variedad de reacciones diferentes de fusión tienen lugar dentro de los núcleos de las estrellas, las cuales dependen de la masa y la composición.

Normalmente las estrellas inician su combustión nuclear con alrededor de un 75% de hidrógeno y un 25% de helio junto con pequeñas trazas de otros elementos. En el núcleo del Sol con unos 107 K el hidrógeno se fusiona para formar helio mediante la cadena protón-protón:

posicionamiento hacia mediados del siglo XX. Véase Estrella (náutica).

similar:

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconInforme de la Guía
«cosas» significa en el uso común «todo lo que existe, independientemente de la conciencia del ser humano». De un modo más preciso,...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconUna reacción química reversible es aquella que puede llevarse a cabo...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconEs una salsa de color rosado, que es muy similar a la Russian dressing...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconResumen la finalidad de la Teoría General de Sistemas consiste en...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso icon¿Puede un novillo de engorde producir más de un kilo diario de carne,...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso icon88 Cada cosa es percibida mediante el conocimiento. El ser brilla...
«Yo iría a la Tierra y ha­blaría con la gente y trataría de convencerles de que Dios no existe y las religiones son falsas, y de...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconLas ondas de luz son una forma de energía electromagnética y la idea...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso icon“Se puede viajar por todo el mundo sin ver nada, o se puede ir solamente...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconLa estructura interna de un objeto se puede reconstruir, a partir...

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso iconIntroducción
«núcleo» de material paramagnético o ferromagnético (normalmente hierro dulce) dentro de la bobina. El núcleo concentra el campo...


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com