Las teorías atómicas y sus diferencias




descargar 26.5 Kb.
títuloLas teorías atómicas y sus diferencias
fecha de publicación23.12.2015
tamaño26.5 Kb.
tipoDocumentos
med.se-todo.com > Ley > Documentos
LAS TEORÍAS ATÓMICAS Y SUS DIFERENCIAS


Modelo atómico de John Dalton, publicada entre los años  1.808 y 1.810

John Dalton (1766-1844). Químico y físico británico. Creó una importante teoría atómica de la materia. En 1803 formuló la ley que lleva su nombre y que resume las leyes cuantitativas de la química (ley de la conservación de la masa, realizada por Lavoisier; ley de las proporciones definidas, realizada por Louis Proust; ley de las proporciones múltiples, realizada por él mismo). Su teoría se puede resumir en:

1.- Los elementos químicos están formados por partículas muy pequeñas e indivisibles llamadas átomos.

2.- Todos los átomos de un elemento químico dado son idénticos en su masa y demás propiedades.

3.- Los átomos de diferentes elementos químicos son distintos, en particular sus masas son diferentes.

4.- Los átomos son indestructibles y retienen su identidad en los cambios químicos.

5.- Los compuestos se forman cuando átomos de diferentes elementos se combinan entre sí, en una relación de números enteros sencilla, formando entidades definidas (hoy llamadas moléculas).

Para Dalton los átomos eran esferas macizas



Modelo atómico de J. J. Thomson , publicada entre los años  1.898 y 1.904





Joseph Thomson (1.856-1.940) partiendo de las informaciones que se tenían hasta ese momento presentó algunas hipótesis en 1898 y 1.904, intentando justificar dos hechos:

  1. La materia es eléctricamente neutra, lo que hace pensar que, además de electrones, debe de haber partículas con cargas positivas.

  2. Los electrones pueden extraerse de los átomos, pero no así las cargas positivas.

Propuso entonces un modelo para el átomo en el que la mayoría de la masa aparecía asociada con la carga positiva (dada la poca masa del electrón en comparación con la de los átomos) y suponiendo que había un cierto número de electrones distribuidos uniformemente dentro de esa masa de carga positiva (como una especie de pastel o calabaza en la que los electrones estuviesen incrustados como si fueran trocitos de fruta o pepitas).

Fue un primer modelo realmente atómico, referido a la constitución de los átomos, pero muy limitado y pronto fue sustituido por otros.

Thomson el átomo consistía en una esfera uniforme de materia cargada positivamente en la que se hallaban incrustados los electrones de un modo parecido a como lo están las semillas en una sandía. Este sencillo modelo explicaba el hecho de que la materia fuese eléctricamente neutra, pues en los átomos de Thomson la carga positiva era neutralizada por la negativa. Además los electrones podrían ser arrancados de la esfera si la energía en juego era suficientemente importante como sucedía en los tubos de descarga.

J. J. Thomson demostró en 1897 que estos rayos se desviaban también en un campo eléctrico y eran atraídos por el polo positivo, lo que probaba que eran cargas eléctricas negativas. Calculó también la relación entre la carga y la masa de estas partículas.



Modelo atómico de Rutherford, publicada en el 1.911



Ernst Rutherford (1.871-1.937) identifico en 1.898 dos tipos de las radiaciones emitidas por el urania a las que llamo a las que llamó alfa (a)  y beta (b) .  Poco después Paul Villard identifico un tercer tipo de radiaciones a las que llamo gamma (n).
Rutherford discípulo de Thomson y sucesos de su cátedra, junto con sus discípulos Hans Geiger (1.882-1.945) y Gregor Marsden (1.890-1956), centraron sus investigaciones en las características de las radiactividad, diseñando su famosa experiencia de bombardear láminas delgadas de distintas sustancias, utilizando como proyectiles las partículas alfa (a) .

Sir Ernest Rutherford (1871-1937), famoso hombre de ciencia inglés que obtuvo el premio Nobel de química en 1919, realizó en 1911 una experiencia que supuso en paso adelante muy importante en el conocimiento del átomo.

La experiencia de Rutherford consistió en bombardear con partículas alfa una finísima lámina de oro. Las partículas alfa atravesaban la lámina de oro y eran recogidas sobre una pantalla de sulfuro de cinc.

La importancia del experimento estuvo en que mientras la mayoría de partículas atravesaban la lámina sin desviarse o siendo desviadas solamente en pequeños ángulos, unas cuantas partículas eran dispersadas a ángulos grandes hasta 180º.

El hecho de que sólo unas pocas radiaciones sufriesen desviaciones hizo suponer que las cargas positivas que las desviaban estaban concentradas dentro de los átomos ocupando un espacio muy pequeño en comparación a todo el tamaño atómico; esta parte del átomo con electricidad positiva fue llamado núcleo.

Rutherford poseía información sobre el tamaño, masa y carga del núcleo, pero no tenía información alguna acerca de la distribución o posición de los electrones.

En el modelo de Rutherford, los electrones se movían alrededor del núcleo como los planetas alrededor del sol. Los electrones no caían en el núcleo, ya que la fuerza de atracción electrostática era contrarrestada por la tendencia del electrón a continuar moviéndose en línea recta. Este modelo fue satisfactorio hasta que se observó que estaba en contradicción con una información ya conocida en aquel momento: de acuerdo con las leyes del electromagnetismo, un electrón o todo objeto eléctricamente cargado que es acelerado o cuya dirección lineal es modificada, emite o absorbe radiación electromagnética.

El electrón del átomo de Rurherford modificaba su dirección lineal continuamente, ya que seguía una trayectoria circular. Por lo tanto, debería emitir radiación electromagnética y esta radiación causaría la disminución de la energía del electrón, que en consecuencia debería describir una trayectoria en espiral hasta caer en el núcleo. El modelo de Rutherford fue sustituido por el de Bohr unos años más tarde.

Con las informaciones que disponía y de las obtenidas de su experiencia, Lord Rutherford propuso en el 1.911 este modelo de átomo:

  1. El átomo esta constituido por una zona central, a la que se le llama núcleo, en la que se encuentra concentrada toda la carga positiva y casi toda la masa del núcleo.

  2. Hay otra zona exterior del átomo, la corteza, en la que se encuentra toda la carga negativa y cuya masa es muy pequeña en comparación con la del átomo. La corteza esta formada por los electrones que tenga el átomo.

  3. Los electrones se están moviendo a gran velocidad en torno al núcleo.

  4. El tamaño del núcleo es muy pequeño en comparación con el del átomo (unas 100.000 veces menor)





Modelo Atómico de Bohr

 El físico danés Niels Bohr ( Premio Nobel de Física 1922)





postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida ( por ejemplo en forma de radiación). Este modelo, si bien se ha perfeccionado con el tiempo, ha servido de base a la moderna física nuclear. Este propuso una Teoría para describir la estructura atómica del Hidrógeno, que explicaba el espectro de líneas de este elemento. A continuación se presentan los postulados del Modelo Atómico de Bohr:

 El Átomo de Hidrógeno contiene un electrón y un núcleo que consiste de un sólo protón. · El electrón del átomo de Hidrógeno puede existir solamente en ciertas órbitas esféricas las cuales se llaman niveles o capas de energía. Estos niveles de energía se hallan dispuestos concéntricamente alrededor del núcleo. Cada nivel se designa con una letra (K, L, M, N,...) o un valor de n (1, 2, 3, 4,...).

  • El electrón posee una energía definida y característica de la órbita en la cual se mueve. Un electrón de la capa K (más cercana al núcleo) posee la energía más baja posible. Con el aumento de la distancia del núcleo, el radio del nivel y la energía del electrón en el nivel aumentan. El electrón no puede tener una energía que lo coloque entre los niveles permitidos.

  • Un electrón en la capa más cercana al núcleo (Capa K) tiene la energía más baja o se encuentra en estado basal. Cuando los átomos se calientan, absorben energía y pasan a niveles exteriores, los cuales son estados energéticos superiores. Se dice entonces que los átomos están excitados.

  • Cuando un electrón regresa a un Nivel inferior emite una cantidad definida de energía a la forma de un cuanto de luz. El cuanto de luz tiene una longitud de onda y una frecuencia características y produce una línea espectral característica.

  • La longitud de onda y la frecuencia de un fotón producido por el paso de un electrón de un nivel de energía mayor a uno menor en el átomo de Hidrógeno esta dada por:

  • Para Bohr el átomo sólo puede existir en un cierto número de estados estacionarios, cada uno con una energía determinada.






En resumense infiere que:

Dalton pensaba que el átomo no se subdividía que era imposible dividirlo. Después, Thomson aclaro que el atomo se componia por un nucleo donde estaban los protones inmersos en una masa, y los electrones que giraban alrededor del. Despues aparecio Rutherford y mediante el experimento de la lamina de oro, descubrio que el nucleo no era denso, si no que se podia traspasar, estaba formado por neutrones y protones. Por último Bohr apoyo este modelo adaptandolo y mejorandolo al atomo de hidrogeno y el modelo actual es el mecánico cuántico, que simula al atomo como una nebulosa.

Cada uno cometió un error y el modelo que tenemos actualmente es el que podría ser el mas acertado pero no tenemos la certeza de eso solo es otro modelo a seguir

Wedgrafia :

http://www.monografias.com/trabajos14/modelo-atomico/modelo-atomico.shtml#BOHR

http://es.wikipedia.org/wiki/%C3%81tomo

similar:

Las teorías atómicas y sus diferencias iconTeorías atómicas

Las teorías atómicas y sus diferencias iconTeorías atómicas Dalton, Thompson, Rutherford y Bohr

Las teorías atómicas y sus diferencias iconLas propiedades de los elementos varían en función de sus masas atómicas”

Las teorías atómicas y sus diferencias iconFilosofía de la Ciencia- resumen Exposición grupo Doctores en Ciencia y Tecnología de la Guajira
«filosofía de la ciencia», «teoría de la ciencia», o «lógica de la ciencia», etc. Quizás el término es lo menos problemático, pero...

Las teorías atómicas y sus diferencias iconInformación general de los trastornos mentales o psicológicos, sus...

Las teorías atómicas y sus diferencias icon1- ¿Cómo se diferencia aceites y grasas en su estructura? Indique sus diferencias macroscópicas

Las teorías atómicas y sus diferencias iconTeorías de las reacciones químicas

Las teorías atómicas y sus diferencias iconIntroducción a las Teorías de la Comunicación

Las teorías atómicas y sus diferencias iconPlanteamientos de las distintas teorías

Las teorías atómicas y sus diferencias iconPara obtener la masa molecular hay que sumar todas las masas atómicas...


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com