Tesis Doctoral




descargar 135.44 Kb.
títuloTesis Doctoral
página3/6
fecha de publicación03.03.2016
tamaño135.44 Kb.
tipoTesis
med.se-todo.com > Ley > Tesis
1   2   3   4   5   6

1.34. Conductancias Iónicas

1.3.11. Historia


     En el verano de 1947 Hodgkin escribió a Cole contándole que junto con Katz (1949) habían encontrado que el responsable de la despolarización y el sobretiro del potencial de acción del axón gigante del calamar era el sodio. Para esto, tan pronto como pudieron después de la Segunda Guerra Mundial, Hodgkin había viajado con Katz a Plymouth, donde hicieron experimentos que mostraron que el potencial de acción era proporcional al logaritmo de la concentración externa de sodio, incluso para soluciones hiperosmóticas. Interpretaron sus datos experimentales de acuerdo con la ecuación de Goldman (1943), obteniendo un aumento transitorio de la permeabilidad en reposo para el sodio, relativa a la del potasio y cloruro, que pasaba de (PK:PNa:PCl = 1.0:0.04:0.45) a (PK:PNa:PCl=1.0:20:0.45), para después del máximo del potencial de acción regresar a (PK:PNa:PCl=1.8:0:0.45).
     Asi, antes de 1948, Hodgkin, Huxley y Katz tenían una idea clara del significado de la permeabilidad transitoria al sodio durante el impulso, así como ideas sobre sus fases de despolarización y repolarización; aparentemente lo único que les faltaba era como avanzar en ese problema sin el control de voltaje.
     En un simposium en Paris Hodgkin, Huxley y Katz (1949) dieron detalles de su equipo experimental y presentaron suficientes resultados para mostrar que estaban seguros de adonde querían llegar. Sin embargo, habían desarrollado un sistema de transportador para el sodio, que requería la aparición inmediata de una corriente de sodio, que después decaería más o menos exponencialmente y sería inactivada tal vez por el calcio.
     Eventualmente Hodgkin y Huxley abandonaron esa hipótesis y en el Congreso de Fisiología en Copenhagen, en el verano de 1950, mostraron a Cole sus datos sobre las conductancias al sodio y potasio analizadas como funciones del tiempo y potencial. Así, el Journal of Physiology indica que sus primeros cuatro trabajos fueron recibidos el 24 de octubre de 1951 y el quinto trabajo el 10 de marzo de 1952, lo que indica que tuvieron solamente dos estaciones de calamares en Plymouth y cuatro años de tiempo para hacer el trabajo.

1.3.22. El potencial de acción


     Cuando se aplica un pulso pequeño de corriente de salida a un axón, la disminución en la carga del capacitor difunde longitudinalmente. Después de un pulso mayor, el sistema control del Na+ se abre un poco para permitir alguna entrada de sodio y este potencial difunde solamente una distancia longitudinal corta antes de ser controlado por la respuesta lenta del sistema control del K+. Un pulso más grande que aumente el potencial por unos 20 mV, hace que el sistema control del Na+ permita más corriente de entrada, la que no solamente aumentará el potencial sino que difundirá interna y externamente a lo largo del axón para llevar las áreas más cercanas al potencial al que aparecerá una corriente neta de entrada. Entonces, al igual que en el sitio de estimulación, el sistema control del Na+ responderá para dar una gNa más rápida y grande, y se inicia el curso completo de la excitación. Conforme el potencial se dirige hacia la respuesta completa, también manda una cantidad mayor de corriente de entrada más y más lejos en el axón, para llevar la actividad primero a los puntos cercanos y después a los lejanos. Asintóticamente el proceso se convierte en un impulso con velocidad constante, autosostenido.
     Cuando un impulso se aproxima a una velocidad de cerca de 20 m/seg, el potencial de la membrana se desplaza hacia cero y empieza a abrirse una compuerta que permite el paso del Na+. Conforme unos iones entran bajo la fuerza tanto del campo eléctrico como del gradiente de concentración, empiezan a neutralizar el exceso en la concentración interna de iones negativos y ayudan a llevar el potencial hacia cero. A su vez, este cambio de potencial aumenta rápidamente la entrada de iones Na+, lo que resulta en un proceso autorregenerativo que lleva el potencial más allá del potencial cero. Después, conforme aparece un exceso interno de cargas positivas, la fuerza que lleva los Na+ hacia dentro se pierde y el potencial se invierte, con lo que la fuerza hacía dentro es reemplazada por una oposición que retrasa la entrada de Na+, ya que ahora se acerca a un nuevo equilibrio alrededor de +50 mV, el ENa. Durante las últimas etapas de este proceso, la vía para el sodio lentamente empieza a presentar más dificultades, además que para entonces se permite el paso del K+ más libremente, lo que resulta en un máximo para el potencial.
     Conforme el flujo de Na+ se detiene, ocurre una recuperación más lenta debido a la salida de iones K+, que alcanza un máximo alrededor del potencial cero. Esta velocidad de declinación ocurre en parte debido a que de nuevo hay un exceso de iones negativos en el interior y a la reducción en la facilidad del movimiento de K+ al valor mínimo con el que empezó. Así, el impulso es solamente una ganancia rápida de Na+ seguida de una pérdida más lenta de K+, lo que obviamente no puede continuar indefinidamente sin otro proceso metabólico, diferente y mucho más lento, que bombea el Na+ extra y lo reemplaza con K+.

1   2   3   4   5   6

similar:

Tesis Doctoral iconTesis doctoral

Tesis Doctoral iconTesis doctoral 5

Tesis Doctoral iconTesis Doctoral. Caracas: usr

Tesis Doctoral iconTesis doctoral laureada en la universidad complutense de madrid

Tesis Doctoral iconTesis doctoral Aránzazu Martín García, Madrid España, 2009

Tesis Doctoral iconUna tesis doctoral propone el uso de etanol y de catalizadores heterogéneos...

Tesis Doctoral iconTesis Ad

Tesis Doctoral iconTesis La tesis es la

Tesis Doctoral iconB tesis c monografía

Tesis Doctoral iconTesis doctorals


Medicina



Todos los derechos reservados. Copyright © 2015
contactos
med.se-todo.com