descargar 135.44 Kb.
|
1.3.33. El Control de VoltajeLa serie de trabajos por Hodgkin, Huxley y Katz (1952) y por Hodgkin y Huxley (1952a-d) es de importancia trascendental para el desarrollo de nuestra ideas sobre la excitabilidad de la membrana. Esos trabajos proporcionan información obtenida con la técnica del control de voltaje, que no había estado accesible por ningún otro método experimental y además, como están basados en ideas desarrolladas por muchos investigadores en años previos, reúnen todo lo que sabía hasta entonces sobre el proceso de la excitación que da origen al potencial de acción. Estas ideas fueron tan completamente sintetizadas, que ahora solamente es necesario describir su punto de vista y todos los principios básicos estarán incluidos. La hipótesis que Hodgkin y Huxley se propusieron probar era la siguiente: la membrana tiene canales que permiten el paso de iones en la dirección que determine su potencial electroquímico. Este movimiento iónico produce corrientes eléctricas y produce el cambio conocido como 'potencial de acción,' que se debe a un aumento en la conductancia al ion sodio (gNa) que le permite entrar a la célula haciendo positivo el interior, lo que a su vez aumenta la gNa aún más. Esa conductancia también cambia como función del tiempo y empieza a disminuir aproximadamente hacia el máximo del potencial de acción, por lo que gNa = f(t,V). Simultáneamente, la conductancia a los iones potasio también está cambiando como función del potencial y del tiempo y, por lo tanto, gK = f(t,V). Así, el problema a resolver era: ¿cuál es la función del tiempo y del voltaje que describe las conductancias gNa y gK? En ese proceso hay tres variables dependientes del tiempo (gNa, gK y V) que interactúan entre sí y, para hacer el problenma más complicado, todo el proceso de cambios en el potencial se desarrolla a una gran velocidad, con un cambio máximo de aproximadamente 700 V/seg. Esta serie de eventos fue probada por medio de experimentos hechos con la técnica del control de voltaje, usando el siguiente paradigma experimental:
Im = IK + INa + IL
IK = gK (Vm - EK) INa = gNa (Vm - ENa) Este es el paso crucial del método, ya que consiste en la medición eléctrica del movimiento iónico y, a partir de éste, el cálculo de las conductancias iónicas.
Los datos experimentales fueron analizados en términos de conductancias iónicas y este concepto es tan atractivo y útil que puede llegar a ser decepcionante, sobre todo si olvidamos que las conductancias fueron expresiones utilizadas para caracterizar el proceso completamente desconocido por el que los iones cruzan las membranas. Así, esa descripción pasará a la historia como la primera descripción clara, general y suscinta de los problemas de la permeabilidad iónica. Desde el punto de vista matemático, es impresionante que las conductancias iónicas sean descritas completamente en términos de una condición inicial, una constante de tiempo y un estado estacionario, y que cada una de ellas sea solamente función del potencial de membrana. Además, esa descripción ha sido extraordinariamente exitosa, lo que parece decir que es cierto que las características iónicas de la membrana están determinadas en forma unívoca por la diferencia de potencial a través de ella. Asó, si las propiedades iónicas están determinadas totalmente por el potencial de membrana, deben ser observadas en forma simple y directa por medio de experimentos en los que el potencial de la membrana sea la variable independiente, lo que quizá sea la razón por la que el control de voltaje resultó más poderoso que lo que se esperaba sobre la base del concepto de estabilidad simple con el que fue desarrollado. |